Primitive normal bases for finite fields

Authors:
H. W. Lenstra and R. J. Schoof

Journal:
Math. Comp. **48** (1987), 217-231

MSC:
Primary 11T30; Secondary 12E20

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866111-3

MathSciNet review:
866111

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that any finite extension of a finite field has a normal basis consisting of primitive roots.

**[1]**J. T. B. Beard, Jr. & K. J. West, "Some primitive polynomials of the third kind,"*Math. Comp.*, v. 28, 1974, pp. 1166-1167, with microfiche supplement. MR**0366879 (51:3125)****[2]**L. Carlitz, "Primitive roots in a finite field,"*Trans. Amer. Math. Soc.*, v. 73, 1952, pp. 373-382. MR**0051869 (14:539a)****[3]**L. Carlitz, "Some problems involving primitive roots in a finite field,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 38, 1952, pp. 314-318, 618. MR**0049939 (14:250f)****[4]**H. Davenport, "Bases for finite fields,"*J. London Math. Soc.*, v. 43, 1968, pp. 21-39; v. 44, 1969, p. 378. MR**0227144 (37:2729)****[5]**G. H. Hardy & E. M. Wright,*An Introduction to the Theory of Numbers*, 4th ed., Oxford University Press, Oxford, 1968.**[6]**W. H. Mills, "The degrees of the factors of certain polynomials over finite fields,"*Proc. Amer. Math. Soc.*, v. 25, 1970, pp. 860-863. MR**0263783 (41:8383)****[7]**O. Ore, "Contributions to the theory of finite fields,"*Trans. Amer. Math. Soc.*, v. 36, 1934, pp. 243-274. MR**1501740****[8]**J-P. Serre,*Cours d'Arithmétique*, Presses Universitaires de France, 1970. MR**0255476 (41:138)****[9]**N. Zierler, "On the theorem of Gleason and Marsh,"*Proc. Amer. Math. Soc.*, v. 9, 1958, pp. 236-237. MR**0094332 (20:851)****[10]**N. Zierler, "On over ,"*Inform. and Control*, v. 16, 1970, pp. 502-505. MR**0271072 (42:5955)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11T30,
12E20

Retrieve articles in all journals with MSC: 11T30, 12E20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866111-3

Keywords:
Finite field,
normal basis,
primitive root

Article copyright:
© Copyright 1987
American Mathematical Society