Numerical values of Goldberg's coefficients in the series for

Authors:
Morris Newman and Robert C. Thompson

Journal:
Math. Comp. **48** (1987), 265-271

MSC:
Primary 17B05; Secondary 11Y99, 17-04

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866114-9

MathSciNet review:
866114

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The coefficients of K. Goldberg in the infinite series for for noncommuting *x* and *y* are computed as far as words of length twenty.

**[1]**Dragomir Ž. Djoković,*An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula*, Math. Z.**143**(1975), no. 3, 209–211. MR**0399196**, https://doi.org/10.1007/BF01214376**[2]**M. Eichler,*A new proof of the Baker-Campbell-Hausdorff formula*, J. Math. Soc. Japan**20**(1968), 23–25. MR**0223417**, https://doi.org/10.2969/jmsj/02010023**[3]**R. Gilmore,*Baker-Campbell-Hausdorff formulas*, J. Mathematical Phys.**15**(1974), 2090–2092. MR**0354944**, https://doi.org/10.1063/1.1666587**[4]**Karl Goldberg,*The formal power series for 𝑙𝑜𝑔𝑒^{𝑥}𝑒^{𝑦}*, Duke Math. J.**23**(1956), 13–21. MR**0082571****[5]**Marshall Hall Jr.,*A basis for free Lie rings and higher commutators in free groups*, Proc. Amer. Math. Soc.**1**(1950), 575–581. MR**0038336**, https://doi.org/10.1090/S0002-9939-1950-0038336-7**[6]**Nathan Jacobson,*Lie algebras*, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR**0143793****[7]**B. V. Lidskiĭ,*A polyhedron of the spectrum of the sum of two Hermitian matrices*, Funktsional. Anal. i Prilozhen.**16**(1982), no. 2, 76–77 (Russian). MR**659172****[8]**Wilhelm Magnus,*On the exponential solution of differential equations for a linear operator*, Comm. Pure Appl. Math.**7**(1954), 649–673. MR**0067873**, https://doi.org/10.1002/cpa.3160070404**[9]**Wilhelm Magnus,*A connection between the Baker-Hausdorff formula and a problem of Burnside*, Ann. of Math. (2)**52**(1950), 111–126. MR**0038964**, https://doi.org/10.2307/1969512**[10]**R. D. Richtmyer and Samuel Greenspan,*Expansion of the Campbell-Baker-Hausdorff formula by computer*, Comm. Pure Appl. Math.**18**(1965), 107–108. MR**0175292**, https://doi.org/10.1002/cpa.3160180111**[11]**Olga Taussky and John Todd,*Some discrete variable computations*, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 201–209. MR**0115261****[12]**R. C. Thompson, Lecture at the 1980 Auburn (Alabama) matrix conference organized by Emilie Haynsworth; three unpublished manuscripts.**[13]**Robert C. Thompson,*Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula*, Proc. Amer. Math. Soc.**86**(1982), no. 1, 12–14. MR**663855**, https://doi.org/10.1090/S0002-9939-1982-0663855-0**[14]**Robert C. Thompson,*Author vs. referee: a case history for middle level mathematicians*, Amer. Math. Monthly**90**(1983), no. 10, 661–668. MR**723938**, https://doi.org/10.2307/2323528**[15]**Robert C. Thompson,*Proof of a conjectured exponential formula*, Linear and Multilinear Algebra**19**(1986), no. 2, 187–197. MR**846553**, https://doi.org/10.1080/03081088608817715**[16]**J. Todd, "Comment on previous self-study answer,"*Ann. Hist. Comput.*, v. 7, 1985, p. 69.**[17]**V. S. Varadarajan,*Lie groups, Lie algebras, and their representations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Prentice-Hall Series in Modern Analysis. MR**0376938**

Retrieve articles in *Mathematics of Computation*
with MSC:
17B05,
11Y99,
17-04

Retrieve articles in all journals with MSC: 17B05, 11Y99, 17-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866114-9

Article copyright:
© Copyright 1987
American Mathematical Society