Numerical values of Goldberg's coefficients in the series for

Authors:
Morris Newman and Robert C. Thompson

Journal:
Math. Comp. **48** (1987), 265-271

MSC:
Primary 17B05; Secondary 11Y99, 17-04

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866114-9

MathSciNet review:
866114

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The coefficients of K. Goldberg in the infinite series for for noncommuting *x* and *y* are computed as far as words of length twenty.

**[1]**D. Ž. Djoković, "An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula,"*Math. Z.*, v. 143, 1975, pp. 209-211. MR**0399196 (53:3047)****[2]**M. Eichler, "A new proof of the Baker-Campbell-Hausdorff formula,"*J. Math. Soc. Japan*, v. 29, 1968, pp. 23-35. MR**0223417 (36:6465)****[3]**R. Gilmore, "Baker-Campbell-Hausdorff formulas,"*J. Math. Phys.*, v. 15, 1974, pp. 2090-2092. MR**0354944 (50:7421)****[4]**K. Goldberg, "The formal power series for ,"*Duke Math. J.*, v. 23, 1956, pp. 13-21. MR**0082571 (18:572f)****[5]**M. Hall, Jr., "A basis for free Lie rings and higher commutators in free groups,"*Proc. Amer. Math. Soc.*, v. 1, 1950, pp. 575-581. MR**0038336 (12:388a)****[6]**N. Jacobson,*Lie Algebras*, Wiley, New York, 1962. MR**0143793 (26:1345)****[7]**B. V. Lidskiĭ, "Spectral polyhedron of a sum of two hermitian matrices,"*Functional Anal. Appl.*, v. 16, 1982, pp. 139-140. MR**659172 (83k:15009)****[8]**W. Magnus, "On the exponential solution of differential equations for a linear operator,"*Comm. Pure Appl. Math.*, v. 7, 1954, pp. 649-673. MR**0067873 (16:790a)****[9]**W. Magnus, "A connection between the Baker-Hausdorff formula and a problem of Burnside,"*Ann. of Math.*, v. 52, 1950, pp. 111-126, and v. 57, 1953, p. 606. MR**0038964 (12:476c)****[10]**R. D. Richtmyer & Samuel Greenspan, "Expansion of the Campbell-Baker-Hausdorff formula by computer,"*Comm. Pure Appl. Math.*, v. 18, 1965, pp. 107-108. MR**0175292 (30:5477)****[11]**Olga Taussky & John Todd,*Some Discrete Variable Computations*, Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R. I., 1958, pp. 201-209. MR**0115261 (22:6063)****[12]**R. C. Thompson, Lecture at the 1980 Auburn (Alabama) matrix conference organized by Emilie Haynsworth; three unpublished manuscripts.**[13]**R. C. Thompson, "Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula,"*Proc. Amer. Math. Soc.*, v. 86, 1982, pp. 12-14. MR**663855 (84e:17017)****[14]**R. C. Thompson, "Author vs. referee: a case history for middle level mathematicians,"*Amer. Math. Monthly*, v. 90, 1983, pp. 661-668. MR**723938 (85c:01072)****[15]**R. C. Thompson, "Proof of a conjectured exponential formula,"*Linear and Multilinear Algebra*, v. 19, 1986, pp. 187-197. MR**846553 (88b:15020)****[16]**J. Todd, "Comment on previous self-study answer,"*Ann. Hist. Comput.*, v. 7, 1985, p. 69.**[17]**V. S. Varadarajan,*Lie Groups, Lie Algebras, and Their Representations*, Prentice-Hall, Englewood Cliffs, N. J., 1974. MR**0376938 (51:13113)**

Retrieve articles in *Mathematics of Computation*
with MSC:
17B05,
11Y99,
17-04

Retrieve articles in all journals with MSC: 17B05, 11Y99, 17-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866114-9

Article copyright:
© Copyright 1987
American Mathematical Society