On the distribution of spacings between zeros of the zeta function
Author:
A. M. Odlyzko
Journal:
Math. Comp. 48 (1987), 273308
MSC:
Primary 11M26; Secondary 1104, 11Y35
MathSciNet review:
866115
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A numerical study of the distribution of spacings between zeros of the Riemann zeta function is presented. It is based on values for the first zeros and for zeros number to that are accurate to within , and which were calculated on the Cray1 and Cray XMP computers. This study tests the Montgomery pair correlation conjecture as well as some further conjectures that predict that the zeros of the zeta function behave like eigenvalues of random Hermitian matrices. Matrices of this type are used in modeling energy levels in physics, and many statistical properties of their eigenvalues are known. The agreement between actual statistics for zeros of the zeta function and conjectured results is generally good, and improves at larger heights. Several initially unexpected phenomena were found in the data and some were explained by relating them to the primes.
 [1]
R. A. Becker & J. M. Chambers, S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, Belmont, Calif., 1984.
 [2]
M.
V. Berry, Semiclassical theory of spectral rigidity, Proc.
Roy. Soc. London Ser. A 400 (1985), no. 1819,
229–251. MR
805089 (87i:81053)
 [3]
M. V. Berry, "Riemann's zeta function: A model for quantum chaos?," in Proc. Second Internat. Conf. on Quantum Chaos (T. Seligman, ed.), SpringerVerlag, Berlin and New York, 1986. (To appear.)
 [4]
Oriol
Bohigas and MarieJoya
Giannoni, Chaotic motion and random matrix theories,
Mathematical and computational methods in nuclear physics (Granada, 1983),
Lecture Notes in Phys., vol. 209, Springer, Berlin, 1984,
pp. 1–99. MR 769113
(86c:58129), http://dx.doi.org/10.1007/3540133925_1
 [5]
O.
Bohigas, M.J.
Giannoni, and C.
Schmit, Characterization of chaotic quantum spectra and
universality of level fluctuation laws, Phys. Rev. Lett.
52 (1984), no. 1, 1–4. MR 730191
(85f:58034), http://dx.doi.org/10.1103/PhysRevLett.52.1
 [6]
O. Bohigas, M. J. Giannoni & C. Schmit, "Spectral properties of the Laplacian and random matrix theories," J. PhysiqueLettres. (To appear.)
 [7]
O. Bohigas, R. U. Haq & A. Pandey, "Higherorder correlations in spectra of complex systems," Phys. Rev. Lett., v. 54, 1985, pp. 16451648.
 [8]
E. Bombieri & D. Hejhal, manuscript in preparation.
 [9]
Richard
P. Brent, Algorithms for minimization without derivatives,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1973. PrenticeHall Series in
Automatic Computation. MR 0339493
(49 #4251)
 [10]
Richard
P. Brent, On the zeros of the Riemann zeta
function in the critical strip, Math. Comp.
33 (1979), no. 148, 1361–1372. MR 537983
(80g:10033), http://dx.doi.org/10.1090/S00255718197905379832
 [11]
T.
A. Brody, J.
Flores, J.
B. French, P.
A. Mello, A.
Pandey, and S.
S. M. Wong, Randommatrix physics: spectrum and strength
fluctuations, Rev. Modern Phys. 53 (1981),
no. 3, 385–479. MR 619406
(82f:81090), http://dx.doi.org/10.1103/RevModPhys.53.385
 [12]
W. S. Brown, "A simple but realistic model of floatingpoint computations," ACM Trans. Math. Software, v. 7, 1981, pp. 445480.
 [13]
J. M. Chambers, W. S. Cleveland, B. Kleiner & P. A. Tukey, Graphical Methods for Data Analysis, Wadsworth, Belmont., Calif., 1983.
 [14]
J.
des Cloizeaux and M.
L. Mehta, Some asymptotic expressions for prolate spheroidal
functions and for the eigenvalues of differential and integral equations of
which they are solutions, J. Mathematical Phys. 13
(1972), 1745–1754. MR 0310312
(46 #9413)
 [15]
J.
des Cloizeaux and M.
L. Mehta, Asymptotic behavior of spacing distributions for the
eigenvalues of random matrices, J. Mathematical Phys.
14 (1973), 1648–1650. MR 0328158
(48 #6500)
 [16]
J.
B. Conrey, A.
Ghosh, D.
Goldston, S.
M. Gonek, and D.
R. HeathBrown, On the distribution of gaps between zeros of the
zetafunction, Quart. J. Math. Oxford Ser. (2) 36
(1985), no. 141, 43–51. MR 780348
(86j:11083), http://dx.doi.org/10.1093/qmath/36.1.43
 [17]
F. D. Crary & J. B. ROSSER, High Precision Coefficients Related to the Zeta Function, MRC Technical Summary Report #1344, Univ. of Wisconsin, Madison, May 1975, 171 pp.; reviewed by R. P. Brent in Math. Comp., v. 31, 1977, pp. 803804.
 [18]
Cray Research, Inc., Cray XMP and Cray1 Computer Systems; Library Reference Manual SR0014, Revision I, Dec. 1984.
 [19]
Cray Research, Inc., Cray1 Computer Systems, S Series Mainframe Reference Manual HR0029, Nov. 1982.
 [20]
D.
Davies, An approximate functional equation for Dirichlet
𝐿functions, Proc. Roy. Soc. Ser. A 284
(1965), 224–236. MR 0173352
(30 #3565)
 [21]
Max
Deuring, Asymptotische Entwicklungen der Dirichletschen
𝐿Reihen, Math. Ann. 168 (1967), 1–30
(German). MR
0213309 (35 #4173)
 [22]
Freeman
J. Dyson, Statistical theory of the energy levels of complex
systems. II, J. Mathematical Phys. 3 (1962),
157–165. MR 0143557
(26 #1112)
 [23]
H. M. Edwards, Riemann's Zeta Function, Academic Press, New York, 1974.
 [24]
David
Freedman and Persi
Diaconis, On the histogram as a density estimator:
𝐿₂ theory, Z. Wahrsch. Verw. Gebiete
57 (1981), no. 4, 453–476. MR 631370
(83a:62091), http://dx.doi.org/10.1007/BF01025868
 [25]
Akio
Fujii, On the zeros of Dirichlet
𝐿functions. I, Trans. Amer. Math.
Soc. 196 (1974),
225–235. MR 0349603
(50 #2096), http://dx.doi.org/10.1090/S00029947197403496032
 [26]
Akio
Fujii, On the uniformity of the distribution of the zeros of the
Riemann zeta function, J. Reine Angew. Math. 302
(1978), 167–205. MR 511699
(80g:10053), http://dx.doi.org/10.1515/crll.1978.302.167
 [27]
Akio
Fujii, On the zeros of Dirichlet
𝐿functions. II, Trans. Amer. Math.
Soc. 267 (1981), no. 1, 33–40. With corrections to:
“On the zeros of Dirichlet 𝐿functions. I”\ [Trans.
Amer. Math. Soc. 196 (1974), 225–235;\ MR 50 #2096]\ and subsequent
papers. MR
621970 (82m:10062), http://dx.doi.org/10.1090/S00029947198106219705
 [28]
W. Gabcke, Neue Herleitung und explizite Restabschätzung der RiemannSiegelFormel, Ph. D. Dissertation, Göttingen, 1979.
 [29]
P.
X. Gallagher, On the distribution of primes in short
intervals, Mathematika 23 (1976), no. 1,
4–9. MR
0409385 (53 #13140)
 [30]
P.
X. Gallagher, Pair correlation of zeros of the zeta function,
J. Reine Angew. Math. 362 (1985), 72–86. MR 809967
(87e:11101), http://dx.doi.org/10.1515/crll.1985.362.72
 [31]
P.
X. Gallagher and Julia
H. Mueller, Primes and zeros in short intervals, J. Reine
Angew. Math. 303/304 (1978), 205–220. MR 514680
(80b:10060)
 [32]
A.
Ghosh, On Riemann’s zeta function—sign changes of
𝑆(𝑇), Recent progress in analytic number theory, Vol.
1 (Durham, 1979) Academic Press, LondonNew York, 1981,
pp. 25–46. MR 637341
(83a:10071)
 [33]
A.
Ghosh, On the Riemann zeta function—mean value theorems and
the distribution of \mid𝑆(𝑇)\mid, J. Number Theory
17 (1983), no. 1, 93–102. MR 712972
(85e:11059), http://dx.doi.org/10.1016/0022314X(83)900100
 [34]
D.
A. Goldston, Prime numbers and the pair correlation of zeros of the
zetafunctions, Topics in analytic number theory (Austin, Tex., 1982)
Univ. Texas Press, Austin, TX, 1985, pp. 82–91. MR
804244
 [35]
D.
R. HeathBrown and D.
A. Goldston, A note on the differences between consecutive
primes, Math. Ann. 266 (1984), no. 3,
317–320. MR
730173 (85e:11064), http://dx.doi.org/10.1007/BF01475582
 [36]
Daniel
A. Goldston and Hugh
L. Montgomery, Pair correlation of zeros and primes in short
intervals, Analytic number theory and Diophantine problems
(Stillwater, OK, 1984), Progr. Math., vol. 70, Birkhäuser
Boston, Boston, MA, 1987, pp. 183–203. MR 1018376
(90h:11084)
 [37]
S.
M. Gonek, A formula of Landau and mean values of
𝜁(𝑠), Topics in analytic number theory (Austin, Tex.,
1982) Univ. Texas Press, Austin, TX, 1985, pp. 92–97. MR
804245
 [38]
A.
P. Guinand, A summation formula in the theory of prime
numbers, Proc. London Math. Soc. (2) 50 (1948),
107–119. MR 0026086
(10,104g)
 [39]
Martin
C. Gutzwiller, Stochastic behavior in quantum scattering,
Phys. D 7 (1983), no. 13, 341–355. Order in
chaos (Los Alamos, N.M., 1982). MR 719062
(85d:11059), http://dx.doi.org/10.1016/01672789(83)901380
 [40]
Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.), National Bureau of Standards, Washington, D.C., 9th printing, 1970.
 [41]
R. U. Haq, A. Pandey & O. Bohigas, "Fluctuation properties of nuclear energy levels: Do theory and experiment agree?," Phys. Rev. Lett., v. 48, 1982, pp. 10861089.
 [42]
D.
R. HeathBrown, Gaps between primes, and the pair correlation of
zeros of the zeta function, Acta Arith. 41 (1982),
no. 1, 85–99. MR 667711
(83m:10078)
 [43]
Aleksandar
Ivić, The Riemann zetafunction, A WileyInterscience
Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the
Riemann zetafunction with applications. MR 792089
(87d:11062)
 [44]
D. Joyner, "Distribution theorems for Lfunctions." (To be published.)
 [45]
D. Joyner, "On the DysonMontgomery hypothesis." (To be published.)
 [46]
E.
Karkoschka and P.
Werner, Einige Ausnahmen zur Rosserschen Regel in der Theorie der
Riemannschen Zetafunktion, Computing 27 (1981),
no. 1, 57–69 (German, with English summary). MR 623176
(82i:10048), http://dx.doi.org/10.1007/BF02243438
 [47]
M. G. Kendall & A. Stuart, The Advanced Theory of Statistics, 3rd ed., Hafner, New York, 1973.
 [48]
Edmund
Landau, Über die Nullstellen der Zetafunktion, Math. Ann.
71 (1912), no. 4, 548–564 (German). MR
1511674, http://dx.doi.org/10.1007/BF01456808
 [49]
R.
Sherman Lehman, On the distribution of zeros of the Riemann
zetafunction, Proc. London Math. Soc. (3) 20 (1970),
303–320. MR 0258768
(41 #3414)
 [50]
J. van de Lune, Some Observations Concerning the ZeroCurves of the Real and Imaginary Parts of Riemann's Zeta Function, Report ZW 201/83, Mathematical Center, Amsterdam, December 1983.
 [51]
J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Center, Amsterdam, 1981.
 [52]
J.
van de Lune, H.
J. J. te Riele, and D.
T. Winter, On the zeros of the Riemann zeta
function in the critical strip. IV, Math.
Comp. 46 (1986), no. 174, 667–681. MR 829637
(87e:11102), http://dx.doi.org/10.1090/S00255718198608296373
 [53]
MATHLAB Group, MACSYMA Reference Manual, MIT Laboratory for Computer Science, 1977.
 [54]
Madan
Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc.,
Boston, MA, 1991. MR 1083764
(92f:82002)
 [55]
M.
L. Mehta and J.
des Cloizeaux, The probabilities for several consecutive
eigenvalues of a random matrix, Indian J. Pure Appl. Math.
3 (1972), no. 2, 329–351. MR 0348823
(50 #1318)
 [56]
H.
L. Montgomery, The pair correlation of zeros of the zeta
function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV,
St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence,
R.I., 1973, pp. 181–193. MR 0337821
(49 #2590)
 [57]
Hugh
L. Montgomery, Distribution of the zeros of the Riemann zeta
function, Proceedings of the International Congress of Mathematicians
(Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975,
pp. 379–381. MR 0419378
(54 #7399)
 [58]
Hugh
L. Montgomery, Extreme values of the Riemann zeta function,
Comment. Math. Helv. 52 (1977), no. 4, 511–518.
MR
0460255 (57 #249)
 [59]
A. M. Odlyzko, "Distribution of zeros of the Riemann zeta function: Conjectures and computations." (Manuscript in preparation.)
 [60]
A.
M. Odlyzko and H.
J. J. te Riele, Disproof of the Mertens conjecture, J. Reine
Angew. Math. 357 (1985), 138–160. MR 783538
(86m:11070), http://dx.doi.org/10.1515/crll.1985.357.138
 [61]
A. M. Odlyzko & A. Schönhage, "Fast algorithms for multiple evaluations of the Riemann zeta function." (To be published.)
 [62]
A. E. Ozluk, Pair Correlation of Zeros of Dirichlet Lfunctions, Ph. D. Dissertation, Univ. of Michigan, Ann Arbor, Mich., 1982.
 [63]
C. E. Porter, ed., Statistical Theories of Spectra: Fluctuations, Academic Press, New York, 1965.
 [64]
N. L. Schryer, A Test of a Computer's FloatingPoint Arithmetic Unit, AT & T Bell Laboratories Computing Science Technical Report #89, 1981.
 [65]
N. L. Schryer, manuscript in preparation.
 [66]
Atle
Selberg, Contributions to the theory of the Riemann
zetafunction, Arch. Math. Naturvid. 48 (1946),
no. 5, 89–155. MR 0020594
(8,567e)
 [67]
C. L. Siegel, "Über Riemanns Nachlass zur analytischen Zahlentheorie," Quellen und Studien zur Geschichte der Math. Astr. Phys., v. 2, 1932, pp. 4580; reprinted in C. L. Siegel, Gesammelte Abhandlungen, vol. 1, SpringerVerlag, Berlin and New York, 1966, pp. 275310.
 [68]
E.
C. Titchmarsh, The Theory of the Riemann ZetaFunction,
Oxford, at the Clarendon Press, 1951. MR 0046485
(13,741c)
 [69]
K.M. Tsang, The Distribution of the Values of the Riemann Zetafunction, Ph. D. Dissertation, Princeton, 1984.
 [70]
A.
M. Turing, A method for the calculation of the zetafunction,
Proc. London Math. Soc. (2) 48 (1943), 180–197. MR 0009612
(5,173a)
 [71]
A. L. Van Buren, A Fortran Computer Program for Calculating the Linear Prolate Functions, Report 7994, Naval Research Laboratory, Washington, May 1976.
 [72]
André
Weil, Sur les “formules explicites” de la
théorie des nombres premiers, Comm. Sém. Math. Univ.
Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952),
no. Tome Supplementaire, 252–265 (French). MR 0053152
(14,727e)
 [73]
D. Winter & H. te Riele, Optimization of a program for the verification of the Riemann hypothesis, Supercomputer, v. 5, 1985, pp. 2932.
 [1]
 R. A. Becker & J. M. Chambers, S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, Belmont, Calif., 1984.
 [2]
 M. V. Berry, "Semiclassical theory of spectral rigidity," Proc. Roy. Soc. London Ser. A, v. 400, 1985, pp. 229251. MR 805089 (87i:81053)
 [3]
 M. V. Berry, "Riemann's zeta function: A model for quantum chaos?," in Proc. Second Internat. Conf. on Quantum Chaos (T. Seligman, ed.), SpringerVerlag, Berlin and New York, 1986. (To appear.)
 [4]
 O. Bohigas & M.J. Giannoni, "Chaotic motion and random matrix theories," in Mathematical and Computational Methods in Nuclear Physics (J. S. Dehesa, J. M. G. Gomez, and A. Polls, eds.), Lecture Notes in Phys., vol. 209, SpringerVerlag, Berlin and New York, 1984, pp. 199. MR 769113 (86c:58129)
 [5]
 O. Bohigas, M. J. Giannoni & C. Schmit, "Characterization of chaotic quantum spectra and universality of level fluctuation laws," Phys. Rev. Lett., v. 52, 1984, pp. 14. MR 730191 (85f:58034)
 [6]
 O. Bohigas, M. J. Giannoni & C. Schmit, "Spectral properties of the Laplacian and random matrix theories," J. PhysiqueLettres. (To appear.)
 [7]
 O. Bohigas, R. U. Haq & A. Pandey, "Higherorder correlations in spectra of complex systems," Phys. Rev. Lett., v. 54, 1985, pp. 16451648.
 [8]
 E. Bombieri & D. Hejhal, manuscript in preparation.
 [9]
 R. P. Brent, Algorithms for Minimization without Derivatives, PrenticeHall, Englewood Cliffs, N. J., 1973. MR 0339493 (49:4251)
 [10]
 R. P. Brent, "On the zeros of the Riemann zeta function in the critical strip," Math. Comp., v. 33, 1979, pp. 13611372. MR 537983 (80g:10033)
 [11]
 T. A. Brody, J. Flores, J. P. French, P. A. Mello, A. Pandey & S. S. M. Wong, "Randommatrix physics: spectrum and strength fluctuations," Rev. Modern Phys., v. 53, 1981, pp. 385479. MR 619406 (82f:81090)
 [12]
 W. S. Brown, "A simple but realistic model of floatingpoint computations," ACM Trans. Math. Software, v. 7, 1981, pp. 445480.
 [13]
 J. M. Chambers, W. S. Cleveland, B. Kleiner & P. A. Tukey, Graphical Methods for Data Analysis, Wadsworth, Belmont., Calif., 1983.
 [14]
 J. des Cloizeaux & M. L. Mehta, "Some asymptotic expressions for prolate spheroidal functions and for the eigenvalues of differential and integral equations of which they are solutions," J. Math. Phys., v. 13, 1972, pp. 17451754. MR 0310312 (46:9413)
 [15]
 J. des Cloizeaux & M. L. Mehta, "Asymptotic behavior of spacing distributions for the eigenvalues of random matrices," J. Math. Phys., v. 14, 1973, pp. 16481650. MR 0328158 (48:6500)
 [16]
 J. B. Conrey, A. Ghosh, D. A. Goldston, S. M. Gonek & D. R. HeathBrown, "Distribution of gaps between zeros of the zeta function," Quart. J. Math. Oxford Ser. (2), v. 36, 1985, pp. 4351. MR 780348 (86j:11083)
 [17]
 F. D. Crary & J. B. ROSSER, High Precision Coefficients Related to the Zeta Function, MRC Technical Summary Report #1344, Univ. of Wisconsin, Madison, May 1975, 171 pp.; reviewed by R. P. Brent in Math. Comp., v. 31, 1977, pp. 803804.
 [18]
 Cray Research, Inc., Cray XMP and Cray1 Computer Systems; Library Reference Manual SR0014, Revision I, Dec. 1984.
 [19]
 Cray Research, Inc., Cray1 Computer Systems, S Series Mainframe Reference Manual HR0029, Nov. 1982.
 [20]
 D. Davies, "An approximate functional equation for Dirichlet Lfunctions," Proc. Roy. Soc. Ser. A, v. 284, 1965, pp. 224236. MR 0173352 (30:3565)
 [21]
 M. Deuring, "Asymptotische Entwicklungen der Dirichletschen LReihen," Math. Ann., v. 168, 1967, pp. 130. MR 0213309 (35:4173)
 [22]
 F. J. Dyson, "Statistical theory of the energy levels of complex systems. II," J. Math. Phys., v. 3, 1962, pp. 157165. MR 0143557 (26:1112)
 [23]
 H. M. Edwards, Riemann's Zeta Function, Academic Press, New York, 1974.
 [24]
 D. Freedman & P. Diaconis, "On the histogram as a density estimator: theory," Z. Wahrsch. Verw. Gebiete, v. 57, 1981, pp. 453476. MR 631370 (83a:62091)
 [25]
 A. Fujii, "On the zeros of Dirichlet Lfunctions. I," Trans. Amer. Math. Soc., v. 196, 1974, pp. 225235. MR 0349603 (50:2096)
 [26]
 A. Fujii, "On the uniformity of the distribution of zeros of the Riemann zeta function," J. Reine Angew. Math., v. 302, 1978, pp. 167205. MR 511699 (80g:10053)
 [27]
 A. Fujii, "On the zeros of Dirichlet Lfunctions. II (with corrections to "On the zeros of Dirichlet Lfunctions. I" and the subsequent papers)," Trans. Amer. Math. Soc., v. 267, 1981, pp. 3340. MR 621970 (82m:10062)
 [28]
 W. Gabcke, Neue Herleitung und explizite Restabschätzung der RiemannSiegelFormel, Ph. D. Dissertation, Göttingen, 1979.
 [29]
 P. X. Gallagher, "On the distribution of primes in short intervals," Mathematika, v. 23, 1976, pp. 49. MR 0409385 (53:13140)
 [30]
 P. X. Gallagher, "Pair correlation of zeros of the zeta function," J. Reine Angew. Math., v. 362, 1985, pp. 7286. MR 809967 (87e:11101)
 [31]
 P. X. Gallagher & J. H. Mueller, "Primes and zeros in short intervals," J. Reine Angew. Math., v. 303/304, 1978, pp. 205220. MR 514680 (80b:10060)
 [32]
 A. Ghosh, "On Riemann's zetafunctionsign changes of ," in Recent Progress in Analytic Number Theory, vol. 1 (H. Halberstam and C. Hooley, eds.), Academic Press, New York, 1981, pp. 2546. MR 637341 (83a:10071)
 [33]
 A. Ghosh, "On the Riemann zetafunctionmean value theorems and the distribution of ," J. Number Theory, v. 17, 1983, pp. 93102. MR 712972 (85e:11059)
 [34]
 D. A. Goldston, "Prime numbers and the pair correlation of zeros of the zeta function," in Topics in Analytic Number Theory (S. W. Graham and J. D. Vaaler, eds.), Univ. of Texas Press, Austin, Texas, 1985, pp. 8291. MR 804244
 [35]
 D. A. Goldston & D. R. HeathBrown, "A note on the differences between consecutive primes," Math. Ann., v. 266, 1984, pp. 317320. MR 730173 (85e:11064)
 [36]
 D. A. Goldston & H. L. Montgomery, "Pair correlation of zeros and primes in short intervals," Proc. 1984 Stillwater Conf. on Analytic Number Theory and Diophantine Problems, BirkhäuserVerlag. (To appear.) MR 1018376 (90h:11084)
 [37]
 S. M. Gonek, "A formula of Landau and mean values of ," in Topics in Analytic Number Theory (S. W. Graham and J. D. Vaaler, eds.), Univ. of Texas Press, Austin, Texas, 1985, pp. 9297. MR 804245
 [38]
 A. P. Guinand, "A summation formula in the theory of prime numbers," Proc. London Math. Soc. (2), v. 50, 1948, pp. 107119. MR 0026086 (10:104g)
 [39]
 M. C. Gutzwiller, "Stochastic behavior in quantum scattering," Phys. D, v. 7, 1983, pp. 341355. MR 719062 (85d:11059)
 [40]
 Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.), National Bureau of Standards, Washington, D.C., 9th printing, 1970.
 [41]
 R. U. Haq, A. Pandey & O. Bohigas, "Fluctuation properties of nuclear energy levels: Do theory and experiment agree?," Phys. Rev. Lett., v. 48, 1982, pp. 10861089.
 [42]
 D. R. HeathBrown, "Gaps between primes and the pair correlation of zeros of the zetafunction," Acta Arith., v. 41, 1982, pp. 8599. MR 667711 (83m:10078)
 [43]
 A. Ivic, The Riemann Zetafunction, Wiley, New York, 1985. MR 792089 (87d:11062)
 [44]
 D. Joyner, "Distribution theorems for Lfunctions." (To be published.)
 [45]
 D. Joyner, "On the DysonMontgomery hypothesis." (To be published.)
 [46]
 E. Karkoschka & P. Werner, "Einige Ausnahmen zur Rosserschen Regel in der Theorie der Riemannschen Zetafunktion," Computing, v. 27, 1981, pp. 5769. MR 623176 (82i:10048)
 [47]
 M. G. Kendall & A. Stuart, The Advanced Theory of Statistics, 3rd ed., Hafner, New York, 1973.
 [48]
 E. Landau, "Über die Nullstellen der Zetafunktion," Math. Ann., v. 71, 1911, pp. 548564. MR 1511674
 [49]
 R. S. Lehman, "On the distribution of zeros of the Riemann zeta function," Proc. London Math. Soc., v. 20, 1970, pp. 303320. MR 0258768 (41:3414)
 [50]
 J. van de Lune, Some Observations Concerning the ZeroCurves of the Real and Imaginary Parts of Riemann's Zeta Function, Report ZW 201/83, Mathematical Center, Amsterdam, December 1983.
 [51]
 J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Center, Amsterdam, 1981.
 [52]
 J. van de Lune, H. J. J. te Riele & D. T. Winter, "On the zeros of the Riemann zeta function in the critical strip. IV," Math. Comp., v. 46, 1986, pp. 667681. MR 829637 (87e:11102)
 [53]
 MATHLAB Group, MACSYMA Reference Manual, MIT Laboratory for Computer Science, 1977.
 [54]
 M. L. Mehta, Random Matrices, Academic Press, New York, 1967. MR 1083764 (92f:82002)
 [55]
 M. L. Mehta & J. des Cloizeaux, "The probabilities for several consecutive eigenvalues of a random matrix," Indian J. Pure Appl. Math., v. 3, 1972, pp. 329351. MR 0348823 (50:1318)
 [56]
 H. L. Montgomery, The Pair Correlation of Zeros of the Zeta Function, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 181193. MR 0337821 (49:2590)
 [57]
 H. L. Montgomery, "Distribution of zeros of the Riemann zeta function," Proc. Internat. Congress Math. Vancouver, 1974, pp. 379381. MR 0419378 (54:7399)
 [58]
 H. L. Montgomery, "Extreme values of the Riemann zeta function," Comment. Math. Helv., v. 52, 1977, pp. 511518. MR 0460255 (57:249)
 [59]
 A. M. Odlyzko, "Distribution of zeros of the Riemann zeta function: Conjectures and computations." (Manuscript in preparation.)
 [60]
 A. M. Odlyzko & H. J. J. te Riele, "Disproof of the Mertens conjecture," J. Reine Angew. Math., v. 357, 1985, pp. 138160. MR 783538 (86m:11070)
 [61]
 A. M. Odlyzko & A. Schönhage, "Fast algorithms for multiple evaluations of the Riemann zeta function." (To be published.)
 [62]
 A. E. Ozluk, Pair Correlation of Zeros of Dirichlet Lfunctions, Ph. D. Dissertation, Univ. of Michigan, Ann Arbor, Mich., 1982.
 [63]
 C. E. Porter, ed., Statistical Theories of Spectra: Fluctuations, Academic Press, New York, 1965.
 [64]
 N. L. Schryer, A Test of a Computer's FloatingPoint Arithmetic Unit, AT & T Bell Laboratories Computing Science Technical Report #89, 1981.
 [65]
 N. L. Schryer, manuscript in preparation.
 [66]
 A. Selberg, "Contributions to the theory of the Riemann zetafunction," Arch. Math. Naturvid. B, v. 48, 1946, pp. 89155. MR 0020594 (8:567e)
 [67]
 C. L. Siegel, "Über Riemanns Nachlass zur analytischen Zahlentheorie," Quellen und Studien zur Geschichte der Math. Astr. Phys., v. 2, 1932, pp. 4580; reprinted in C. L. Siegel, Gesammelte Abhandlungen, vol. 1, SpringerVerlag, Berlin and New York, 1966, pp. 275310.
 [68]
 E. C. Titchmarsh, The Theory of the Riemann Zetafunction, Oxford Univ. Press, Oxford, 1951. MR 0046485 (13:741c)
 [69]
 K.M. Tsang, The Distribution of the Values of the Riemann Zetafunction, Ph. D. Dissertation, Princeton, 1984.
 [70]
 A. M. Turing, "A method for the calculation of the zetafunction," Proc. London Math. Soc. (2), v. 48, 1943, pp. 180197. MR 0009612 (5:173a)
 [71]
 A. L. Van Buren, A Fortran Computer Program for Calculating the Linear Prolate Functions, Report 7994, Naval Research Laboratory, Washington, May 1976.
 [72]
 A. Weil, "Sur les "formules explicites" de la théorie des nombres premiers," Comm. Sém. Math. Univ. Lund, tome supplémentaire, 1952, pp. 252265. MR 0053152 (14:727e)
 [73]
 D. Winter & H. te Riele, Optimization of a program for the verification of the Riemann hypothesis, Supercomputer, v. 5, 1985, pp. 2932.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11M26,
1104,
11Y35
Retrieve articles in all journals
with MSC:
11M26,
1104,
11Y35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198708661150
PII:
S 00255718(1987)08661150
Article copyright:
© Copyright 1987
American Mathematical Society
