On computing isomorphisms of equation orders

Author:
M. Pohst

Journal:
Math. Comp. **48** (1987), 309-314

MSC:
Primary 11R09; Secondary 11-04, 11Y40

MathSciNet review:
866116

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A number-geometric method for computing isomorphisms of algebraic number fields (respectively, -orders of such fields) is developed. Its main advantage is its easy implementation and moderate computation time.

**[1]**F. Diaz y Diaz, Private communication to the author.**[2]**U. Fincke and M. Pohst,*Improved methods for calculating vectors of short length in a lattice, including a complexity analysis*, Math. Comp.**44**(1985), no. 170, 463–471. MR**777278**, 10.1090/S0025-5718-1985-0777278-8**[3]**A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász,*Factoring polynomials with rational coefficients*, Math. Ann.**261**(1982), no. 4, 515–534. MR**682664**, 10.1007/BF01457454**[4]**M. Pohst,*The minimum discriminant of seventh degree totally real algebraic number fields*, Number theory and algebra, Academic Press, New York, 1977, pp. 235–240. MR**0466069****[5]**Michael Pohst,*On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields*, J. Number Theory**14**(1982), no. 1, 99–117. MR**644904**, 10.1016/0022-314X(82)90061-0**[6]**M. Pohst & H. Zassenhaus,*Methods and Problems of Computational Algebraic Number Theory*, Cambridge Univ. Press. (To appear.)**[7]**H. Zassenhaus and J. Liang,*On a problem of Hasse*, Math. Comp.**23**(1969), 515–519. MR**0246853**, 10.1090/S0025-5718-1969-0246853-2**[8]**Horst G. Zimmer,*Computational problems, methods, and results in algebraic number theory*, Lecture Notes in Mathematics, Vol. 262, Springer-Verlag, Berlin-New York, 1972. MR**0323751**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R09,
11-04,
11Y40

Retrieve articles in all journals with MSC: 11R09, 11-04, 11Y40

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1987-0866116-2

Article copyright:
© Copyright 1987
American Mathematical Society