Computation of the Néron-Tate height on elliptic curves

Authors:
Heinz M. Tschöpe and Horst G. Zimmer

Journal:
Math. Comp. **48** (1987), 351-370

MSC:
Primary 14G25; Secondary 11D25, 11Y50, 14K15

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866121-6

MathSciNet review:
866121

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using Néron's reduction theory and a method of Tate, we develop a procedure for calculating the local and global Néron-Tate height on an elliptic curve over the rationals. The procedure is illustrated by means of two examples of Silverman and is then applied to calculate the global Néron-Tate height of a series of rank-one curves of Bremner-Cassels and of a series of rank-two curves of Selmer. In the latter case, the regulator is also computed, and a conjecture of S. Lang is investigated numerically. In dealing with the arithmetic of elliptic curves *E* over a global field *K*, the task arises of computing the Néron-Tate height on the group of rational points of *E* over *K*. Solving this task in an efficient manner is important, for instance, in view of calculations concerning the Birch and Swinnerton-Dyer conjecture (see [2]) or of the conjectures of Serge Lang [6]. The purpose of this note is to suggest a procedure for performing the necessary calculations.

**[1]**A. Bremner & J. W. S. Cassels, "On the equation ,"*Math. Comp.*, v. 42, 1984, pp. 257-264. MR**726003 (85f:11017)****[2]**J. P. Buhler, B. H. Gross & D. B. Zagier, "On the conjecture of Birch and Swinnerton-Dyer for an ellliptic curve of rank 3,"*Math. Comp.*, v. 44, 1985, pp. 473-481. MR**777279 (86g:11037)****[3]**J. W. S. Cassels, "Diophantine equations with special reference to elliptic curves,"*J. London Math. Soc.*, v. 41, 1966, pp. 193-291. MR**0199150 (33:7299)****[4]**H. G. Folz,*Ein Beschränktheitssatz für die Torsion von 2-defizienten elliptischen Kurven über algebraischen Zahlkörpern*, Ph.D. Thesis, Saarbrücken, 1985.**[5]**S. Lang,*Elliptic Curves*:*Diophantine Analysis*, Springer-Verlag, Berlin and New York, 1978. MR**518817 (81b:10009)****[6]**S. Lang, "Conjectured Diophantine estimates on elliptic curves,"*Progr. Math.*, v. 35, 1983, pp. 155-171. MR**717593 (85d:11024)****[7]**S. Lang,*Fundamentals of Diophantine Geometry*, Springer-Verlag, Berlin and New York, 1983. MR**715605 (85j:11005)****[8]**E. Selmer, "The Diophantine equation ,"*Acta Math.*, v. 85, 1951, pp. 203-362. MR**0041871 (13:13i)****[9]**J. H. Silverman, "Lower bound for the canonical height on elliptic curves,"*Duke Math. J.*, v. 48, 1981, pp. 633-648. MR**630588 (82k:14043)****[10]**J. T. Tate, "The arithmetic of elliptic curves,"*Invent. Math.*, v. 23, 1974, pp. 179-206. MR**0419359 (54:7380)****[11]**J. T. Tate, "Algorithm for finding the type of a singular fibre in an elliptic pencil," in*Modular Functions of One Variable*IV, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975, pp. 33-52. MR**0393039 (52:13850)****[12]**J. T. Tate, Letter to J.-P. Serre, Oct. 1, 1979.**[13]**H. G. Zimmer, "On the difference of the Weil height and the Néron-Tate height,"*Math. Z.*, v. 147, 1976, pp. 35-51. MR**0419455 (54:7476)****[14]**H. G. Zimmer, "Quasifunctions on elliptic curves over local fields,"*J. Reine Angew. Math.*, v. 307/308, 1979, pp. 221-246. MR**534221 (80g:14024)****[15]**H. G. Zimmer, "Torsion points on elliptic curves over a global field,"*Manuscripta Math.*, v. 29, 1979, pp. 119-145. MR**545037 (81a:14018)****[16]***Modular Functions of One Variable*IV (B. J. Birch & W. Kuyk, eds.), Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975. MR**0376533 (51:12708)**

Retrieve articles in *Mathematics of Computation*
with MSC:
14G25,
11D25,
11Y50,
14K15

Retrieve articles in all journals with MSC: 14G25, 11D25, 11Y50, 14K15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866121-6

Article copyright:
© Copyright 1987
American Mathematical Society