The stability in and of the -projection onto finite element function spaces

Authors:
M. Crouzeix and V. Thomée

Journal:
Math. Comp. **48** (1987), 521-532

MSC:
Primary 41A15; Secondary 41A35, 65N10, 65N30

MathSciNet review:
878688

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of the -projection onto some standard finite element spaces , considered as a map in and , , is shown under weaker regularity requirements than quasi-uniformity of the triangulations underlying the definitions of the .

**[1]**C. Bernardi and G. Raugel,*Approximation numérique de certaines équations paraboliques non linéaires*, RAIRO Anal. Numér.**18**(1984), no. 3, 237–285 (French, with English summary). MR**751759****[2]**Carl de Boor,*A bound on the 𝐿_{∞}-norm of 𝐿₂-approximation by splines in terms of a global mesh ratio*, Math. Comp.**30**(1976), no. 136, 765–771. MR**0425432**, 10.1090/S0025-5718-1976-0425432-1**[3]**C. de Boor,*On a max-norm bound for the least-squares spline approximant*, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 163–175. MR**649424****[4]**Ph. Clément,*Approximation by finite element functions using local regularization*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique**9**(1975), no. R-2, 77–84 (English, with Loose French summary). MR**0400739****[5]**Jean Descloux,*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260–265. MR**0309292****[6]**Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,*Optimal 𝐿_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**0371077**, 10.1090/S0025-5718-1975-0371077-0**[7]**Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,*The stability in 𝐿^{𝑞} of the 𝐿²-projection into finite element function spaces*, Numer. Math.**23**(1974/75), 193–197. MR**0383789****[8]**A. H. Schatz, V. C. Thomée, and L. B. Wahlbin,*Maximum norm stability and error estimates in parabolic finite element equations*, Comm. Pure Appl. Math.**33**(1980), no. 3, 265–304. MR**562737**, 10.1002/cpa.3160330305**[9]**G. O. Thorin,*Convexity theorems generalizing those of M. Riesz and Hadamard with some applications*, Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]**9**(1948), 1–58. MR**0025529**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A15,
41A35,
65N10,
65N30

Retrieve articles in all journals with MSC: 41A15, 41A35, 65N10, 65N30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1987-0878688-2

Article copyright:
© Copyright 1987
American Mathematical Society