On the computation of solutions of boundary value problems on infinite intervals

Author:
R. M. M. Mattheij

Journal:
Math. Comp. **48** (1987), 533-549

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878689-4

MathSciNet review:
878689

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For solutions of linear boundary value problems defined on one has to study the stable or bounded solution manifold. A characterization of these manifolds is investigated here. A multiple shooting type algorithm is then developed to compute such solutions. This algorithm is fully adaptive and also covers problems where the ODE matrix does not tend to a limit (as is usually assumed), if the unstable manifold consists only of exponentially growing solutions. If the latter manifold also contains polynomially growing solutions, an extrapolation type approach is suggested. The theory is illustrated by a number of examples.

**[1]**Alvin Bayliss,*A double shooting scheme for certain unstable and singular boundary value problems*, Math. Comp.**32**(1978), no. 141, 61–71. MR**0464598**, https://doi.org/10.1090/S0025-5718-1978-0464598-6**[2]**W. A. Coppel,*Dichotomies in stability theory*, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR**0481196****[3]**R. England,*A Program for the Solution of Boundary Value Problems for Systems of Ordinary Differential Equations*, Culham Laboratory Report, PDN 3/73, 1976.**[4]**F. R. de Hoog and R. M. M. Mattheij,*On dichotomy and well conditioning in BVP*, SIAM J. Numer. Anal.**24**(1987), no. 1, 89–105. MR**874737**, https://doi.org/10.1137/0724008**[5]**F. R. de Hoog and R. Weiss,*An approximation theory for boundary value problems on infinite intervals*, Computing**24**(1980), no. 2-3, 227–239 (English, with German summary). MR**620090**, https://doi.org/10.1007/BF02281727**[6]**Frank R. de Hoog and Richard Weiss,*On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind*, SIAM J. Math. Anal.**11**(1980), no. 1, 41–60. MR**556495**, https://doi.org/10.1137/0511003**[7]**W. F. Langford,*A shooting algorithm for the best least squares solution of two-point boundary value problems*, SIAM J. Numer. Anal.**14**(1977), no. 3, 527–542. MR**0436605**, https://doi.org/10.1137/0714032**[8]**Marianela Lentini and Herbert B. Keller,*Boundary value problems on semi-infinite intervals and their numerical solution*, SIAM J. Numer. Anal.**17**(1980), no. 4, 577–604. MR**584732**, https://doi.org/10.1137/0717049**[9]**Peter A. Markowich,*A theory for the approximation of solutions of boundary value problems on infinite intervals*, SIAM J. Math. Anal.**13**(1982), no. 3, 484–513. MR**653468**, https://doi.org/10.1137/0513033**[10]**José Luis Massera and Juan Jorge Schäffer,*Linear differential equations and function spaces*, Pure and Applied Mathematics, Vol. 21, Academic Press, New York-London, 1966. MR**0212324****[11]**R. M. M. Mattheij,*On approximating smooth solutions of linear singularly perturbed ODE*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 457–465. MR**556536****[12]**R. M. M. Mattheij,*Characterizations of dominant and dominated solution of linear recursions*, Numer. Math.**35**(1980), no. 4, 421–442. MR**593837**, https://doi.org/10.1007/BF01399009**[13]**R. M. M. Mattheij,*Estimates for the errors in the solutions of linear boundary value problems, due to perturbations*, Computing**27**(1981), no. 4, 299–318 (English, with German summary). MR**643401**, https://doi.org/10.1007/BF02277181**[14]**R. M. M. Mattheij,*Stable computation of solutions of unstable linear initial value recursions*, BIT**22**(1982), no. 1, 79–93. MR**654744**, https://doi.org/10.1007/BF01934397**[15]**R. M. M. Mattheij,*The conditioning of linear boundary value problems*, SIAM J. Numer. Anal.**19**(1982), no. 5, 963–978. MR**672571**, https://doi.org/10.1137/0719070**[16]**R. M. M. Mattheij,*Decoupling and stability of algorithms for boundary value problems*, SIAM Rev.**27**(1985), no. 1, 1–44. MR**791753**, https://doi.org/10.1137/1027001**[17]**R. M. M. Mattheij & F. R. de Hoog, "On non-invertible boundary value problems," Proceedings of the Workshop on*Numerical Boundary Value ODE's*(U. Ascher & R. D. Russell, eds.), Birkhäuser, Boston, 1985, pp. 55-75.**[18]**R. M. M. Mattheij and G. W. M. Staarink,*On optimal shooting intervals*, Math. Comp.**42**(1984), no. 165, 25–40. MR**725983**, https://doi.org/10.1090/S0025-5718-1984-0725983-0**[19]**R. M. M. Mattheij and G. W. M. Staarink,*An efficient algorithm for solving general linear two-point BVP*, SIAM J. Sci. Statist. Comput.**5**(1984), no. 4, 745–763. MR**765204**, https://doi.org/10.1137/0905053**[20]**T. N. Robertson,*The linear two-point boundary-value problem on an infinite interval*, Math. Comp.**25**(1971), 475–481. MR**0303742**, https://doi.org/10.1090/S0025-5718-1971-0303742-1**[21]**Gustaf Söderlind and Robert M. M. Mattheij,*Stability and asymptotic estimates in nonautonomous linear differential systems*, SIAM J. Math. Anal.**16**(1985), no. 1, 69–92. MR**772869**, https://doi.org/10.1137/0516005**[22]**G. W. Stewart,*On the perturbation of pseudo-inverses, projections and linear least squares problems*, SIAM Rev.**19**(1977), no. 4, 634–662. MR**0461871**, https://doi.org/10.1137/1019104

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878689-4

Article copyright:
© Copyright 1987
American Mathematical Society