Uniform highorder difference schemes for a singularly perturbed twopoint boundary value problem
Author:
Eugene C. Gartland
Journal:
Math. Comp. 48 (1987), 551564, S5
MSC:
Primary 65L10; Secondary 34B05, 34E15
MathSciNet review:
878690
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A family of uniformly accurate finitedifference schemes for the model problem is constructed using a general finitedifference framework of Lynch and Rice [Math. Comp., v. 34, 1980, pp. 333372] and Doedel [SIAM J. Numer. Anal., v. 15, 1978, pp. 450465], A scheme of order (uniform in ) is constructed to be exact on a collection of functions of the type . The high order is achieved by using extra evaluations of the source term f. The details of the construction of such a scheme (for general p) and a complete discretization error analysis, which uses the stability results of Niederdrenk and Yserentant [Numer. Math., v. 41, 1983, pp. 223253], are given. Numerical experiments exhibiting uniform orders , and, are presented.
 [1]
L.
R. Abrahamsson, H.
B. Keller, and H.
O. Kreiss, Difference approximations for singular perturbations of
systems of ordinary differential equations, Numer. Math.
22 (1974), 367–391. MR 0388784
(52 #9618)
 [2]
Leif
Abrahamsson and Stanley
Osher, Monotone difference schemes for singular perturbation
problems, SIAM J. Numer. Anal. 19 (1982), no. 5,
979–992. MR
672572 (84b:65073), http://dx.doi.org/10.1137/0719071
 [3]
D.
N. de G. Allen and R.
V. Southwell, Relaxation methods applied to determine the motion,
in two dimensions, of a viscous fluid past a fixed cylinder, Quart. J.
Mech. Appl. Math. 8 (1955), 129–145. MR 0070367
(16,1171a)
 [4]
U.
Ascher and R.
Weiss, Collocation for singular perturbation problems. I. First
order systems with constant coefficients, SIAM J. Numer. Anal.
20 (1983), no. 3, 537–557. MR 701095
(85a:65113), http://dx.doi.org/10.1137/0720035
 [5]
U.
Ascher and R.
Weiss, Collocation for singular perturbation
problems. II. Linear first order systems without turning points,
Math. Comp. 43 (1984), no. 167, 157–187. MR 744929
(86g:65138a), http://dx.doi.org/10.1090/S00255718198407449292
 [6]
O.
Axelsson, Stability and error estimates of Galerkin finite element
approximations for convectiondiffusion equations, IMA J. Numer. Anal.
1 (1981), no. 3, 329–345. MR 641313
(83a:65105), http://dx.doi.org/10.1093/imanum/1.3.329
 [7]
Alan
E. Berger, Jay
M. Solomon, Melvyn
Ciment, Stephen
H. Leventhal, and Bernard
C. Weinberg, Generalized OCI schemes for boundary
layer problems, Math. Comp.
35 (1980), no. 151, 695–731. MR 572850
(81f:65057), http://dx.doi.org/10.1090/S00255718198005728508
 [8]
Alan
E. Berger, Jay
M. Solomon, and Melvyn
Ciment, An analysis of a uniformly accurate
difference method for a singular perturbation problem, Math. Comp. 37 (1981), no. 155, 79–94. MR 616361
(83f:65121), http://dx.doi.org/10.1090/S00255718198106163610
 [9]
R.
C. Y. Chin and R.
Krasny, A hybrid asymptoticfinite element method for stiff
twopoint boundary value problems, SIAM J. Sci. Statist. Comput.
4 (1983), no. 2, 229–243. MR 697177
(84e:65064), http://dx.doi.org/10.1137/0904018
 [10]
James
Alan Cochran, On the uniqueness of solutions of linear differential
equations, J. Math. Anal. Appl. 22 (1968),
418–426. MR 0224895
(37 #494)
 [11]
Eusebius
J. Doedel, The construction of finite difference approximations to
ordinary differential equations, SIAM J. Numer. Anal.
15 (1978), no. 3, 450–465. MR 0483481
(58 #3482)
 [12]
E.
P. Doolan, J.
J. H. Miller, and W.
H. A. Schilders, Uniform numerical methods for problems with
initial and boundary layers, Boole Press, Dún Laoghaire, 1980.
MR 610605
(82h:65053)
 [13]
K. V. Emeĺjanov, "A truncated difference scheme for a linear singularly perturbed boundary value problem," Soviet Math. Dokl., v. 25, 1982, pp. 168172.
 [14]
Joseph
E. Flaherty and William
Mathon, Collocation with polynomial and tension splines for
singularlyperturbed boundary value problems, SIAM J. Sci. Statist.
Comput. 1 (1980), no. 2, 260–289. MR 594760
(82a:65055), http://dx.doi.org/10.1137/0901018
 [15]
Joseph
E. Flaherty and R.
E. O’Malley Jr., The numerical solution of boundary
value problems for stiff differential equations, Math. Comput. 31 (1977), no. 137, 66–93. MR 0657396
(58 #31859), http://dx.doi.org/10.1090/S00255718197706573960
 [16]
Joseph
E. Flaherty and Robert
E. O’Malley Jr., Numerical methods for stiff systems of
twopoint boundary value problems, SIAM J. Sci. Statist. Comput.
5 (1984), no. 4, 865–886. MR 765211
(86a:65070), http://dx.doi.org/10.1137/0905061
 [17]
R.
Bruce Kellogg and Alice
Tsan, Analysis of some difference
approximations for a singular perturbation problem without turning
points, Math. Comp. 32
(1978), no. 144, 1025–1039.
MR
0483484 (58 #3485), http://dx.doi.org/10.1090/S00255718197804834849
 [18]
Barbro
Kreiss and HeinzOtto
Kreiss, Numerical methods for singular perturbation problems,
SIAM J. Numer. Anal. 18 (1981), no. 2, 262–276.
MR 612142
(82e:65088), http://dx.doi.org/10.1137/0718019
 [19]
HeinzOtto
Kreiss, Difference methods for stiff ordinary differential
equations, SIAM J. Numer. Anal. 15 (1978),
no. 1, 21–58. MR 486570
(80a:65149), http://dx.doi.org/10.1137/0715003
 [20]
Stephen
H. Leventhal, An operator compact implicit method of exponential
type, J. Comput. Phys. 46 (1982), no. 1,
138–165. MR
665807 (84b:76007), http://dx.doi.org/10.1016/00219991(82)900080
 [21]
Robert
E. Lynch and John
R. Rice, A highorder difference method for
differential equations, Math. Comp.
34 (1980), no. 150, 333–372. MR 559190
(82b:65070), http://dx.doi.org/10.1090/S00255718198005591908
 [22]
J.
J. H. Miller (ed.), Boundary and interior
layers—computational and asymptotic methods, Boole Press,
Dún Laoghaire, 1980. MR 589347
(81j:76001)
 [23]
J.
J. H. Miller (ed.), Computational and asymptotic methods for
boundary and interior layers, Boole Press Conference Series,
vol. 4, Boole Press, Dún Laoghaire, 1982. MR 737565
(85d:65004)
 [24]
J.
J. H. Miller (ed.), BAIL III, Boole Press Conference Series,
vol. 6, Boole Press, Dún Laoghaire, 1984. Proceddings of the
third international confernce on boundary and interior
layers—computational and asymptotic methods; Held at Trinity College,
Dublin, June 20–22, 1984. MR 774603
(85k:00008)
 [25]
Klaus
Niederdrenk and Harry
Yserentant, Die gleichmäßige Stabilität
singulär gestörter diskreter und kontinuierlicher
Randwertprobleme, Numer. Math. 41 (1983), no. 2,
223–253 (German, with English summary). MR 703123
(84j:65049), http://dx.doi.org/10.1007/BF01390214
 [26]
Koichi
Niijima, A uniformly convergent difference scheme for a semilinear
singular perturbation problem, Numer. Math. 43
(1984), no. 2, 175–198. MR 736079
(85h:65164), http://dx.doi.org/10.1007/BF01390122
 [27]
Robert
E. O’Malley Jr., Introduction to singular perturbations,
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1974. Applied Mathematics and Mechanics, Vol. 14. MR 0402217
(53 #6038)
 [28]
Eugene
O’Riordan, Singularly perturbed finite element methods,
Numer. Math. 44 (1984), no. 3, 425–434. MR 757497
(85m:65080), http://dx.doi.org/10.1007/BF01405573
 [29]
Eugene
O’Riordan and Martin
Stynes, A finite element method for a singularly perturbed boundary
value problem in conservative form, BAIL III (Dublin, 1984) Boole
Press Conf. Ser., vol. 6, Boole, Dún Laoghaire, 1984,
pp. 271–275. MR 774621
(86d:65108)
 [30]
Stanley
Osher, Nonlinear singular perturbation problems and onesided
difference schemes, SIAM J. Numer. Anal. 18 (1981),
no. 1, 129–144. MR 603435
(83c:65188), http://dx.doi.org/10.1137/0718010
 [31]
John
R. Rice, The approximation of functions. Vol. 2: Nonlinear and
multivariate theory, AddisonWesley Publishing Co., Reading,
Mass.LondonDon Mills, Ont., 1969. MR 0244675
(39 #5989)
 [32]
Donald
R. Smith, The multivariable method in singular perturbation
analysis, SIAM Rev. 17 (1975), 221–273. MR 0361331
(50 #13776)
 [33]
M.
van Veldhuizen, Higher order methods for a singularly perturbed
problem, Numer. Math. 30 (1978), no. 3,
267–279. MR 0501937
(58 #19156)
 [34]
Richard
Weiss, An analysis of the box and trapezoidal
schemes for linear singularly perturbed boundary value problems,
Math. Comp. 42 (1984), no. 165, 41–67. MR 725984
(86b:65085), http://dx.doi.org/10.1090/S00255718198407259842
 [1]
 L. R. Abrahamsson, H. B. Keller & H. O. Kreiss, "Difference approximations for singular perturbations of systems of ordinary differential equations," Numer. Math., v. 22, 1974, pp. 367391. MR 0388784 (52:9618)
 [2]
 L. Abrahamsson & S. Osher, "Monotone difference schemes for singular perturbation problems," SIAM J. Numer. Anal., v. 19, 1982, pp. 979992. MR 672572 (84b:65073)
 [3]
 D. N. de G. Allen & R. V. Southwell, "Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder," Quart. J. Mech. Appl. Math., v. 8, 1955, pp. 129145. MR 0070367 (16:1171a)
 [4]
 U. Ascher & R. Weiss, "Collocation for singular perturbation problems I: First order systems with constant coefficients," SIAM J. Numer. Anal., v. 20, 1983, pp. 537557. MR 701095 (85a:65113)
 [5]
 U. Ascher & R. Weiss, "Collocation for singular perturbation problems. II: Linear first order systems without turning points," Math. Comp., v. 43, 1984, pp. 157187. MR 744929 (86g:65138a)
 [6]
 A. O. H. Axelsson, "Stability and error estimates of Galerkin finiteelement approximations for convectiondiffusion equations," IMA J. Numer. Anal., v. 1, 1981, pp. 329345. MR 641313 (83a:65105)
 [7]
 A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal & B. C. Weinberg, "Generalized operator compact implicit schemes for boundary layer problems," Math. Comp., v. 35, 1980, pp. 695731. MR 572850 (81f:65057)
 [8]
 A. E. Berger, J. M. Solomon & M. Ciment, "An analysis of a uniformly accurate difference method for a singular perturbation problem," Math. Comp., v. 37, 1981, pp. 7994. MR 616361 (83f:65121)
 [9]
 R. C. Y. Chin & R. Krasny, "A hybrid asymptotic/finiteelement method for stiff twopoint boundary value problems," SIAM J. Sci. Statist. Comput., v. 4, 1983, pp. 229243. MR 697177 (84e:65064)
 [10]
 J. A. Cochran, "On the uniqueness of solutions of linear differential equations," J. Math. Anal. Appl., v. 22, 1968, pp. 418426. MR 0224895 (37:494)
 [11]
 E. J. Doedel, "The construction of finitedifference approximations to ordinary differential equations," SIAM J. Numer. Anal., v. 15, 1978, pp. 450465. MR 0483481 (58:3482)
 [12]
 E. P. Doolan, J. J. H. Miller & W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980. MR 610605 (82h:65053)
 [13]
 K. V. Emeĺjanov, "A truncated difference scheme for a linear singularly perturbed boundary value problem," Soviet Math. Dokl., v. 25, 1982, pp. 168172.
 [14]
 J. E. Flaherty & W. Mathon, "Collocation with polynomial and tension splines for singularly perturbed boundary value problems," SIAM J. Sci. Statist. Comput., v. 1, 1980, pp. 260289. MR 594760 (82a:65055)
 [15]
 J. E. Flaherty & R. E. O'Malley Jr., "The numerical solution of boundary value problems for stiff differential equations," Math. Comp., v. 31, 1977, pp. 6693. MR 0657396 (58:31859)
 [16]
 J. E. Flaherty & R. E. O'Malley, Jr., "Numerical methods for stiff systems of twopoint boundary value problems," SIAM J. Sci. Statist. Comput., v. 5, 1984, pp. 865886. MR 765211 (86a:65070)
 [17]
 R. B. Kellogg & A. Tsan, "Analysis of some difference approximations for a singular perturbation problem without turning points," Math. Comp., v. 32, 1978, pp. 10251039. MR 0483484 (58:3485)
 [18]
 B. Kreiss & H.O. Kreiss, "Numerical methods for singular perturbation problems," SIAM J. Numer. Anal., v. 18, 1981, pp. 262276. MR 612142 (82e:65088)
 [19]
 H.O. Kreiss, "Difference methods for stiff ordinary differential equations," SIAM J. Numer. Anal., v. 15, 1978, pp. 2158. MR 486570 (80a:65149)
 [20]
 S. H. Leventhal, "An operator compact implicit method of exponential type," J. Comput. Phys., v. 46, 1982, pp. 138165. MR 665807 (84b:76007)
 [21]
 R. E. Lynch & J. R. Rice, "A highorder difference method for differential equations," Math. Comp., v. 34, 1980, pp. 333372. MR 559190 (82b:65070)
 [22]
 J. J. H. Miller (Editor), Boundary and Interior LayersComputational and Asymptotic Methods, Proc. BAIL I Conf., Boole Press, Dublin, 1980. MR 589347 (81j:76001)
 [23]
 J. J. H. Miller (Editor), Computational and Asymptotic Methods for Boundary and Interior Layers, Proc. BAIL II Conf., Boole Press, Dublin, 1982. MR 737565 (85d:65004)
 [24]
 J. J. H. Miller (Editor), Proc. BAIL III Conf., Boole Press, Dublin, 1984. MR 774603 (85k:00008)
 [25]
 K. Niederdrenk & H. Yserentant, "Die gleichmässige Stabilität singulär gestörter diskreter und kontinuierlicher Randwertprobleme," Numer. Math., v. 41, 1983, pp. 223253. MR 703123 (84j:65049)
 [26]
 K. Niijima, "A uniformly convergent difference scheme for a semilinear singular perturbation problem," Numer. Math., v. 43, 1984, pp. 175198. MR 736079 (85h:65164)
 [27]
 R. O. O'Malley, Jr., Introduction to Singular Perturbations, Academic Press, New York, 1974. MR 0402217 (53:6038)
 [28]
 E. O'Riordan, "Singularly perturbed finiteelement methods," Numer. Math., v. 44, 1984, pp. 425434. MR 757497 (85m:65080)
 [29]
 E. O'Riordan & M. Stynes, A Finite Element Method for a Singularly Perturbed Boundary Value Problem in Conservative Form, Proc. BAIL III Conf. (J. J. H. Miller, ed.), Boole Press, Dublin, 1984. MR 774621 (86d:65108)
 [30]
 S. Osher, "Nonlinear singular perturbation problems and onesided difference schemes," SIAM J. Numer. Anal., v. 18, 1981, pp. 129144. MR 603435 (83c:65188)
 [31]
 J. R. Rice, The Approximation of Functions, Vol. 2, Nonlinear and Multivariate Theory, AddisonWesley, Reading, Mass., 1969. MR 0244675 (39:5989)
 [32]
 D. R. Smith, "The multivariable method in singular perturbation analysis," SIAM Rev., v. 17, 1975, pp. 221273. MR 0361331 (50:13776)
 [33]
 M. Van Veldhuizen, "Highorder methods for a singularly perturbed problem," Numer. Math., v. 30, 1978, pp. 267279. MR 0501937 (58:19156)
 [34]
 R. Weiss, "An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems," Math. Comp., v. 42, 1984, pp. 4167. MR 725984 (86b:65085)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10,
34B05,
34E15
Retrieve articles in all journals
with MSC:
65L10,
34B05,
34E15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198708786900
PII:
S 00255718(1987)08786900
Article copyright:
© Copyright 1987 American Mathematical Society
