Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem

Author:
Eugene C. Gartland

Journal:
Math. Comp. **48** (1987), 551-564, S5

MSC:
Primary 65L10; Secondary 34B05, 34E15

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878690-0

MathSciNet review:
878690

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A family of uniformly accurate finite-difference schemes for the model problem is constructed using a general finite-difference framework of Lynch and Rice [*Math. Comp.*, v. 34, 1980, pp. 333-372] and Doedel [*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 450-465], A scheme of order (uniform in ) is constructed to be exact on a collection of functions of the type . The high order is achieved by using extra evaluations of the source term *f*. The details of the construction of such a scheme (for general *p*) and a complete discretization error analysis, which uses the stability results of Niederdrenk and Yserentant [*Numer. Math.*, v. 41, 1983, pp. 223-253], are given. Numerical experiments exhibiting uniform orders , and, are presented.

**[1]**L. R. Abrahamsson, H. B. Keller & H. O. Kreiss, "Difference approximations for singular perturbations of systems of ordinary differential equations,"*Numer. Math.*, v. 22, 1974, pp. 367-391. MR**0388784 (52:9618)****[2]**L. Abrahamsson & S. Osher, "Monotone difference schemes for singular perturbation problems,"*SIAM J. Numer. Anal.*, v. 19, 1982, pp. 979-992. MR**672572 (84b:65073)****[3]**D. N. de G. Allen & R. V. Southwell, "Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder,"*Quart. J. Mech. Appl. Math.*, v. 8, 1955, pp. 129-145. MR**0070367 (16:1171a)****[4]**U. Ascher & R. Weiss, "Collocation for singular perturbation problems I: First order systems with constant coefficients,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 537-557. MR**701095 (85a:65113)****[5]**U. Ascher & R. Weiss, "Collocation for singular perturbation problems. II: Linear first order systems without turning points,"*Math. Comp.*, v. 43, 1984, pp. 157-187. MR**744929 (86g:65138a)****[6]**A. O. H. Axelsson, "Stability and error estimates of Galerkin finite-element approximations for convection-diffusion equations,"*IMA J. Numer. Anal.*, v. 1, 1981, pp. 329-345. MR**641313 (83a:65105)****[7]**A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal & B. C. Weinberg, "Generalized operator compact implicit schemes for boundary layer problems,"*Math. Comp.*, v. 35, 1980, pp. 695-731. MR**572850 (81f:65057)****[8]**A. E. Berger, J. M. Solomon & M. Ciment, "An analysis of a uniformly accurate difference method for a singular perturbation problem,"*Math. Comp.*, v. 37, 1981, pp. 79-94. MR**616361 (83f:65121)****[9]**R. C. Y. Chin & R. Krasny, "A hybrid asymptotic/finite-element method for stiff two-point boundary value problems,"*SIAM J. Sci. Statist. Comput.*, v. 4, 1983, pp. 229-243. MR**697177 (84e:65064)****[10]**J. A. Cochran, "On the uniqueness of solutions of linear differential equations,"*J. Math. Anal. Appl.*, v. 22, 1968, pp. 418-426. MR**0224895 (37:494)****[11]**E. J. Doedel, "The construction of finite-difference approximations to ordinary differential equations,"*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 450-465. MR**0483481 (58:3482)****[12]**E. P. Doolan, J. J. H. Miller & W. H. A. Schilders,*Uniform Numerical Methods for Problems with Initial and Boundary Layers*, Boole Press, Dublin, 1980. MR**610605 (82h:65053)****[13]**K. V. Emeĺjanov, "A truncated difference scheme for a linear singularly perturbed boundary value problem,"*Soviet Math. Dokl.*, v. 25, 1982, pp. 168-172.**[14]**J. E. Flaherty & W. Mathon, "Collocation with polynomial and tension splines for singularly perturbed boundary value problems,"*SIAM J. Sci. Statist. Comput.*, v. 1, 1980, pp. 260-289. MR**594760 (82a:65055)****[15]**J. E. Flaherty & R. E. O'Malley Jr., "The numerical solution of boundary value problems for stiff differential equations,"*Math. Comp.*, v. 31, 1977, pp. 66-93. MR**0657396 (58:31859)****[16]**J. E. Flaherty & R. E. O'Malley, Jr., "Numerical methods for stiff systems of two-point boundary value problems,"*SIAM J. Sci. Statist. Comput.*, v. 5, 1984, pp. 865-886. MR**765211 (86a:65070)****[17]**R. B. Kellogg & A. Tsan, "Analysis of some difference approximations for a singular perturbation problem without turning points,"*Math. Comp.*, v. 32, 1978, pp. 1025-1039. MR**0483484 (58:3485)****[18]**B. Kreiss & H.-O. Kreiss, "Numerical methods for singular perturbation problems,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 262-276. MR**612142 (82e:65088)****[19]**H.-O. Kreiss, "Difference methods for stiff ordinary differential equations,"*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 21-58. MR**486570 (80a:65149)****[20]**S. H. Leventhal, "An operator compact implicit method of exponential type,"*J. Comput. Phys.*, v. 46, 1982, pp. 138-165. MR**665807 (84b:76007)****[21]**R. E. Lynch & J. R. Rice, "A high-order difference method for differential equations,"*Math. Comp.*, v. 34, 1980, pp. 333-372. MR**559190 (82b:65070)****[22]**J. J. H. Miller (Editor),*Boundary and Interior Layers--Computational and Asymptotic Methods*, Proc. BAIL I Conf., Boole Press, Dublin, 1980. MR**589347 (81j:76001)****[23]**J. J. H. Miller (Editor),*Computational and Asymptotic Methods for Boundary and Interior Layers*, Proc. BAIL II Conf., Boole Press, Dublin, 1982. MR**737565 (85d:65004)****[24]**J. J. H. Miller (Editor), Proc. BAIL III Conf., Boole Press, Dublin, 1984. MR**774603 (85k:00008)****[25]**K. Niederdrenk & H. Yserentant, "Die gleichmässige Stabilität singulär gestörter diskreter und kontinuierlicher Randwertprobleme,"*Numer. Math.*, v. 41, 1983, pp. 223-253. MR**703123 (84j:65049)****[26]**K. Niijima, "A uniformly convergent difference scheme for a semilinear singular perturbation problem,"*Numer. Math.*, v. 43, 1984, pp. 175-198. MR**736079 (85h:65164)****[27]**R. O. O'Malley, Jr.,*Introduction to Singular Perturbations*, Academic Press, New York, 1974. MR**0402217 (53:6038)****[28]**E. O'Riordan, "Singularly perturbed finite-element methods,"*Numer. Math.*, v. 44, 1984, pp. 425-434. MR**757497 (85m:65080)****[29]**E. O'Riordan & M. Stynes,*A Finite Element Method for a Singularly Perturbed Boundary Value Problem in Conservative Form*, Proc. BAIL III Conf. (J. J. H. Miller, ed.), Boole Press, Dublin, 1984. MR**774621 (86d:65108)****[30]**S. Osher, "Nonlinear singular perturbation problems and one-sided difference schemes,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 129-144. MR**603435 (83c:65188)****[31]**J. R. Rice,*The Approximation of Functions, Vol. 2, Nonlinear and Multivariate Theory*, Addison-Wesley, Reading, Mass., 1969. MR**0244675 (39:5989)****[32]**D. R. Smith, "The multivariable method in singular perturbation analysis,"*SIAM Rev.*, v. 17, 1975, pp. 221-273. MR**0361331 (50:13776)****[33]**M. Van Veldhuizen, "High-order methods for a singularly perturbed problem,"*Numer. Math.*, v. 30, 1978, pp. 267-279. MR**0501937 (58:19156)****[34]**R. Weiss, "An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems,"*Math. Comp.*, v. 42, 1984, pp. 41-67. MR**725984 (86b:65085)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
34B05,
34E15

Retrieve articles in all journals with MSC: 65L10, 34B05, 34E15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878690-0

Article copyright:
© Copyright 1987
American Mathematical Society