A new collocation-type method for Hammerstein integral equations

Authors:
Sunil Kumar and Ian H. Sloan

Journal:
Math. Comp. **48** (1987), 585-593

MSC:
Primary 65R20; Secondary 45G10

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878692-4

MathSciNet review:
878692

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider Hammerstein equations of the form

*y*is then obtained by use of the (exact) equation

*y*, are discussed. The main result in the paper is that, under suitable conditions, the resulting approximation to

*y*converges to the exact solution at a rate at least equal to that of the best approximation to

*z*from the space in which the collocation solution is sought.

**[1]**K. E. Atkinson,*A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind*, SIAM, Philadelphia, Pa., 1976. MR**0483585 (58:3577)****[2]**C. T. H. Baker,*The Numerical Treatment of Integral Equations*, Clarendon Press, Oxford, 1977. MR**0467215 (57:7079)****[3]**R. E. Bellman & R. E. Kalaba,*Quasilinearization and Nonlinear Boundary-Value Problems*, Elsevier, New York, 1965. MR**0178571 (31:2828)****[4]**R. P. Brent, "Some efficient algorithms for solving systems of nonlinear equations,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 327-344. MR**0331764 (48:10096)****[5]**F. Chatelin & R. Lebbar, "The iterated projection solution for Fredholm integral equations of second kind,"*J. Austral. Math. Soc. Ser. B*, v. 22, 1981, pp. 439-451. MR**626935 (82h:65096)****[6]**F. Chatelin & R. Lebbar, "Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem,"*J. Integral Equations*, v. 6, 1984, pp. 71-91. MR**727937 (85i:65167)****[7]**I. G. Graham, S. Joe & I. H. Sloan, "Iterated Galerkin versus iterated collocation for integral equations of the second kind,"*IMA J. Numer. Anal.*, v. 5, 1985, pp. 355-369. MR**800020 (86j:65178)****[8]**S. Joe, "Collocation methods using piecewise polynomials for second kind integral equations,"*J. Comput. Appl. Math.*, v. 12 & 13, 1985, pp. 391-400. MR**793970****[9]**L. V. Kantorovich & G. P. Akilov,*Functional Analysis*, Pergamon Press, Oxford, 1982. MR**664597 (83h:46002)****[10]**H. B. Keller, "Geometrically isolated nonisolated solutions and their approximation,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 822-838. MR**629667 (82j:58013)****[11]**M. A. Krasnosel'skiĭ,*Topological Methods in the Theory of Nonlinear Integral Equations*, Pergamon Press, Oxford, 1964.**[12]**M. A. Krasnosel'skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskiĭ & V. Ya. Stetsenko,*Approximate Solution of Operator Equations*, Wolters-Noordhoff, Groningen, 1972.**[13]**M. A. Krasnosel'skiĭ & P. P. Zabreĭko,*Geometrical Methods of Nonlinear Analysis*, Springer-Verlag, Berlin, 1984.**[14]**T. R. Lucas & G. W. Reddien, "Some collocation methods for nonlinear boundary value problems,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 341-356. MR**0309333 (46:8443)****[15]**J. J. Moré & M. Y. Cosnard, "Numerical solution of nonlinear equations,"*ACM Trans. Math. Software*, v. 5, 1979, pp. 64-85. MR**520748 (80c:65110)****[16]**J. J. Moré & M. Y. Cosnard, "ALGORITHM 554: BRENTM, A Fortran subroutine for the numerical solution of systems of nonlinear equations,"*ACM Trans. Math. Software*, v. 6, 1980, pp. 240-251.**[17]**R. D. Russell & L. F. Shampine, "A collocation method for boundary value problems,"*Numer. Math.*, v. 19, 1972, pp. 1-28. MR**0305607 (46:4737)****[18]**G. Vaĭnikko, "The convergence of the collocation method for nonlinear differential equations,"*U.S.S.R. Comput. Math. and Math. Phys.*, v. 6, no. 1, 1966, pp. 47-58. MR**0196945 (33:5129)****[19]**G. Vaĭnikko, "Galerkin's perturbation method and the general theory of approximate methods for nonlinear equations,"*U.S.S.R. Comput. Math. and Math. Phys.*, v. 7, no. 4, 1967, pp. 1-41.**[20]**G. Vaĭnikko, "The connection between mechanical quadrature and finite difference methods,"*U.S.S.R. Comput. Math. and Math. Phys.*, v. 9, no. 2, 1969, pp. 1-16. MR**0260225 (41:4853)****[21]**G. Vaĭnikko & P. Uba, "A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel,"*J. Austral. Math. Soc. Ser. B*, v. 22, 1981, pp. 431-438. MR**626934 (82h:65100)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45G10

Retrieve articles in all journals with MSC: 65R20, 45G10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878692-4

Article copyright:
© Copyright 1987
American Mathematical Society