-boundedness of -projections on splines for a multiple geometric mesh

Author:
Rong Qing Jia

Journal:
Math. Comp. **48** (1987), 675-690

MSC:
Primary 41A15; Secondary 15A60

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878699-7

MathSciNet review:
878699

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns the -projectors from to the normed linear space of polynomial splines. It is shown that for the multiple geometric meshes the norms of the corresponding -projectors are bounded independently of the mesh ratio.

**[1]**C. de Boor, "The quasi-interpolant as a tool in elementary polynomial spline theory," in*Approximation Theory*(G. G. Lorentz, ed.), Academic Press, New York, 1973, pp. 269-276. MR**0336159 (49:935)****[2]**C. de Boor, "Splines as linear combinations of*B*-splines. A survey," in*Approximation Theory*II (G. G. Lorentz, ed.), Academic Press, New York, 1976, pp. 1-47. MR**0467092 (57:6959)****[3]**C. de Boor, "Total positivity of the spline collocation matrix,"*Indiana Univ. Math. J.*, v. 25, 1976, pp. 541-551. MR**0415138 (54:3229)****[4]**C. de Boor, "A bound on the -norm of the -approximation by splines in terms of a global mesh ratio,"*Math. Comp.*, v. 30, 1976, pp. 767-771.**[5]**C. de Boor, "On a max norm bound for the least-squares spline approximation," in*Approximation and Function Spaces*(Z. Ciesielski, ed.), North-Holland, New York, 1981, pp. 163-175.**[6]**C. de Boor, S. Friedland & A. Pinkus, "Inverses of infinite sign regular matrices,"*Trans. Amer. Math. Soc.*, v. 274, 1982, pp. 59-68. MR**670918 (84f:47035b)****[7]**A. S. Cavaretta, W. Dahmen, C. A. Micchelli & P. W. Smith, "On the solvability of certain systems of linear difference equations,"*SIAM J. Math. Anal.*, v. 12, 1981, pp. 833-841. MR**635236 (83a:39004)****[8]**Z. Ciesielski, "Properties of the orthonormal Franklin system,"*Studia Math.*, v. 23, 1963, pp. 141-157. MR**0157182 (28:419)****[9]**Y. Y. Feng & J. Kozak, "On the generalized Euler-Frobenius polynomial,"*J. Approx. Theory*, v. 32, 1981, pp. 327-338. MR**641143 (83d:41011)****[10]**A. O. Gelfand,*Calculus of Finite Differences*, Authorized English translation of the 3rd Russian ed., Delhi, Hindustan Publishing Corp., 1971. MR**0342890 (49:7634)****[11]**I. I. Hirschman, "Matrix-valued Toeplitz operators,"*Duke Math. J.*, v. 34, 1967, pp. 403-415. MR**0220002 (36:3071)****[12]**K. Höllig, " -boundedness of -projections on splines for a geometric mesh,"*J. Approx. Theory*, v. 33, 1981, pp. 318-333. MR**646153 (83j:41010)****[13]**S. Karlin,*Total Positivity*, Vol. 1, Stanford University Press, Stanford, California, 1968. MR**0230102 (37:5667)****[14]**C. A. Micchelli, "Cardinal*L*-splines," in*Studies in Spline Functions and Approximation Theory*, Academic Press, New York, 1976, pp. 203-250. MR**0481767 (58:1866)****[15]**B. Mityagin, "Quadratic pencils and least-squares piecewise polynomial approximation,"*Math. Comp.*, v. 40, 1983, pp. 283-300. MR**679446 (84c:41006)****[16]**W. Rudin,*Real and Complex Analysis*, McGraw-Hill, New York, 1974. MR**0344043 (49:8783)****[17]**I. J. Schoenberg,*Cardinal Spline Interpolation*, Regional Conference in Applied Mathematics No. 12, SIAM, Philadelphia, Pa., 1973. MR**0420078 (54:8095)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A15,
15A60

Retrieve articles in all journals with MSC: 41A15, 15A60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878699-7

Article copyright:
© Copyright 1987
American Mathematical Society