Cardinal interpolation by multivariate splines

Authors:
C. K. Chui, K. Jetter and J. D. Ward

Journal:
Math. Comp. **48** (1987), 711-724

MSC:
Primary 41A05; Secondary 41A15, 41A63

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878701-2

MathSciNet review:
878701

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to investigate cardinal interpolation using locally supported piecewise polynomials. In particular, the notion of a commutator is introduced and its connection with the Marsden identity is observed. The order of a commutator is shown to be equivalent to the Strang and Fix conditions that arise in the study of the local approximation orders using quasi-interpolants. We also prove that scaled cardinal interpolants give these local approximation orders.

**[1]**S. Agmon,*Lectures on elliptic boundary value problems*, Van Nostrand, Princeton, N. J., 1965. MR**0178246 (31:2504)****[2]**C. de Boor & K. Höllig, "*B*-splines from parallelepipeds,"*J. Analyse Math.*, v. 42, 1983, pp. 99-115. MR**729403 (86d:41008)****[3]**C. de Boor, K. Höllig & S. Riemenschneider, "Bivariate cardinal interpolation by splines on a three direction mesh,"*Illinois J. Math.*, v. 29, 1985, pp. 533-566. MR**806466 (87b:65008)****[4]**C. de Boor & R.-Q. Jia, "Controlled approximation and a characterization of the local approximation order,"*Proc. Amer. Math. Soc.*, v. 95, 1985, pp. 547-553. MR**810161 (87d:41025)****[5]**J. H. Bramble & S. R. Hilbert, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation,"*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 112-124. MR**0263214 (41:7819)****[6]**W. Dahmen & C. A. Micchelli, "Translates of multivariate splines,"*Linear Algebra Appl.*, v. 52/53, 1983, pp. 217-234. MR**709352 (85e:41033)****[7]**W. Dahmen & C. A. Micchelli, "Recent progress in multivariate splines," in*Approximation Theory IV*(C. K. Chui, L. L. Schumaker & J. D. Ward, eds.), Academic Press, New York, 1983, pp. 27-121. MR**754343 (85h:41013)****[8]**W. Dahmen & C. A. Micchelli, "On the approximation order from certain multivariate spline spaces,"*J. Austral. Math. Soc.*, v. 26, 1984, pp. 233-246. MR**765640 (87j:41032)****[9]**P. O. Frederickson,*Generalized Triangular Splines*, Mathematics Report 7-71, Lakehead Univ., 1971.**[10]**W. Rudin,*Functional Analysis*, McGraw-Hill, New York, 1973. MR**0365062 (51:1315)****[11]**I. J. Schoenberg,*Cardinal Spline Interpolation*, SIAM Publ., Philadelphia, Pa., 1973. MR**0420078 (54:8095)****[12]**I. J. Schoenberg, "Cardinal interpolation and spline functions,"*J. Approx. Theory*, v. 2, 1969, pp. 167-206. MR**0257616 (41:2266)****[13]**I. J. Schoenberg, "Cardinal interpolation and spline functions: II. Interpolation of data of power growth,"*J. Approx. Theory*, v. 6, 1972, pp. 404-420. MR**0340899 (49:5649)****[14]**L. L. Schumaker,*Spline Functions*:*Basic Theory*, Wiley, New York, 1981. MR**606200 (82j:41001)****[15]**G. Strang & G. Fix, "A Fourier analysis of the finite element variational method," C.I.M.E. II Cilo 1971,*Constructive Aspects of Functional Analysis*(G. Geymonat, ed.), 1973, pp. 793-840.

Retrieve articles in *Mathematics of Computation*
with MSC:
41A05,
41A15,
41A63

Retrieve articles in all journals with MSC: 41A05, 41A15, 41A63

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878701-2

Keywords:
Cardinal interpolation,
scaled cardinal interpolation,
Fourier transform,
discrete Fourier transform,
box splines,
Marsden identity

Article copyright:
© Copyright 1987
American Mathematical Society