Computation of character decompositions of class functions on compact semisimple Lie groups

Authors:
R. V. Moody and J. Patera

Journal:
Math. Comp. **48** (1987), 799-827

MSC:
Primary 22E46

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878707-3

MathSciNet review:
878707

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new algorithm is described for splitting class functions of an arbitrary semisimple compact Lie group *K* into sums of irreducible characters. The method is based on the use of elements of finite order (EFO) in *K* and is applicable to a number of problems, including decompositions of tensor products and various symmetry classes of tensors, as well as branching rules in group-subgroup reductions. The main feature is the construction of a decomposition matrix *D*, computed once and for all for a given range of problems and for a given *K*, which then reduces any particular splitting to a simple matrix multiplication. Determination of *D* requires selection of a suitable set *S* of conjugacy classes of EFO representing a finite subgroup of a maximal torus *T* of *K* and the evaluation of (Weyl group) orbit sums on *S*. In fact, the evaluation of *D* can be coupled with the evaluation of the orbit sums in such a way as to greatly enhance the efficiency of the latter. The use of the method is illustrated by some extensive examples of tensor product decompositions in . Modular arithmetic allows all computations to be performed exactly.

**[1]**J. F. Adams,*Lectures on Lie groups*, Benjamin, New York, 1969. MR**0252560 (40:5780)****[2]**N. Bourbaki,*Groupes et Algèbres de Lie*(Eléments de Mathématiques), Chapitres IV, V, VI, Hermann, Paris, 1968. MR**0240238 (39:1590)****[3]**M. R. Bremner, "Fast computation of weight multiplicities,"*J. Symb. Comput.*(To appear.) MR**872785 (88a:17010)****[4]**M. R. Bremner, R. V. Moody & J. Patera,*Tables of Dominant Weight Multiplicities of Simple Lie Algebras of Rank*, Pure and Appl. Math., vol. 90, Marcel Dekker, New York, 1985. MR**779462 (86f:17002)****[5]**J. Conway & L. Queen,*Computing the Character Table of a Lie Group*, Proc. Conf. on Finite Groups, Montreal, 1982.**[6]**J. D. Dixon, "High speed computation of group characters,"*Numer. Math.*, v. 10, 1967, pp. 446-450. MR**0224726 (37:325)****[7]**D. Ž. Djoković, "On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups,"*Proc. Amer. Math. Soc.*, v. 80, 1980, pp. 181-184. MR**574532 (81h:20052)****[8]**D. Ž. Djoković, "On conjugacy classes of elements of finite order in complex semisimple Lie groups,"*J. Pure Appl. Algebra*, v. 35, 1985, pp. 1-13. MR**772157 (86h:22010)****[9]**E. B. Dynkin, "Semisimple subalgebras of semisimple Lie algebras,"*Amer. Math. Soc. Transl.*(2), 1957, pp. 111-244.**[10]**E. B. Dynkin, "Maximal subgroups of the classical groups," Suppl. 23,*Amer. Math. Soc. Transl.*(2), v. 6, 1957, pp. 245-378.**[11]**M. J. Englefield,*Tabulation of Kronecker products of representations of F*4,*E*6,*and E*7, Preprint, Univ. of Southampton, Math. N57, 1981.**[12]**V. G. Kac, "Automorphisms of finite order of semisimple Lie algebras,"*J. Funct. Anal. Appl.*, v. 3, 1969, p. 252. MR**0251091 (40:4322)****[13]**W. G. McKay, R. V. Moody & J. Patera, "Table of*E*8 characters and decompositions of plethysms,"*Lie Algebras and Related Topics*, CMS Conference Proceedings, vol. 5, 1986, pp. 227-263. MR**832202 (87k:22021)****[14]**W. G. McKay, R. V. Moody & J. Patera, "Decompositions of tensor products of representations,"*Algebras Groups Geom.*(To appear.) MR**900487 (89f:17006)****[15]**W. G. McKay & J. Patera,*Tables of Dimensions, Indices and Branching Rules for Representations of Simple Lie Algebras*, Marcel Dekker, New York, 1981. MR**604363 (82i:17008)****[16]**R. V. Moody, "Root systems of hyperbolic type,"*Adv. in Math.*, v. 33, 1979, pp. 144-160. MR**544847 (81g:17006)****[17]**R. V. Moody & J. Patera, "Fast recursion formula for weight multiplicities,"*Bull. Amer. Math. Soc.*(*N.S.*), v. 7, 1982, pp. 237-242. MR**656202 (84a:17005)****[18]**R. V. Moody & J. Patera, "Characters of elements of finite order in simple Lie groups,"*SIAM J. Algebraic Discrete Methods*, v. 5, no. 2, 1984. MR**752042 (86e:22023)****[19]**R. V. Moody, J. Patera & R. T. Sharp, "Character generators for elements of finite order in simple Lie groups , , , , and ,"*J. Math. Phys.*, v. 24, 1983, pp. 23-87. MR**718223 (84k:22018)****[20]**R. V. Moody, J. Patera & R. T. Sharp, "Elements of finite order and symmetry classes of tensors of simple Lie groups." (In preparation.)**[21]**H. J. Nussbaumer,*Fast Fourier Transform and Convolution Algorithms*, Springer-Verlag, New York, 1981. MR**606376 (83e:65219)****[22]**K. R. Parthasarathy, R. Ranga Rao & V. S. Varadarajan, "Representations of complex semisimple Lie groups and Lie algebras,"*Ann. of Math.*(2), v. 85, 1967, pp. 383-429. MR**0225936 (37:1526)****[23]**A. J. Pianzola, "Elements of finite order and cyclotomic fields,"*Lie Algebras and Related Topics*, CMS Conference Proceedings, vol. 5, 1986, pp. 351-355. MR**832209****[24]**A. J. Pianzola, "On the arithmetic of the representation ring and elements of finite order in Lie groups,"*J. Algebra*. (To appear.)**[25]**I. Schur,*Über die Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen*, Dissertation, Berlin, 1901. Collected Works, Vol. I, Springer-Verlag, New York, 1973.**[26]**R. Slansky, "Group theory for unified model building,"*Phys. Rep.*, v. 79, 1981, pp. 1-128. MR**639396 (83d:81112)****[27]**T. A. Springer, "Regular elements of finite reflection groups,"*Invent. Math.*, v. 25, 1974, pp. 159-198. MR**0354894 (50:7371)****[28]**B. G. Wybourne & M. J. Bowick, "Basic properties of the exceptional Lie groups,"*Austral. J. Phys.*, v. 30, 1977, pp. 259-286. MR**0462278 (57:2252)**

Retrieve articles in *Mathematics of Computation*
with MSC:
22E46

Retrieve articles in all journals with MSC: 22E46

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0878707-3

Article copyright:
© Copyright 1987
American Mathematical Society