CORRIGENDA

In Eq. (3.1) on page 523, the numerator parameter \(2n + \lambda - t + 1 \) of the function \(_p^q \mathrm{F}_{p+1} \) should read \(2n + \lambda - m - t + 1 \).

In Eq. (3.2) (the same page), the parameter \(n + 2n + \lambda \) of the function \(_q^4 \mathrm{F}_{q+3} \) should read \(m + 2n + \lambda \), while the expression \(2n + \lambda + q + 2 \), being a denominator parameter of this function as well as of the function \(_q^2 \mathrm{F}_{q+1} \), should be in both cases replaced by \(2n + \lambda + t + 1 \).

In Eq. (3.3) (also page 523), \(b(n - 1 - b_{p+2}) \) should read \((n - 1 + b_{p+2}) \), and the denominator parameter \(n + \lambda - t + 1 + b_{p+2} \) of the function \(_p^4 \mathrm{F}_{p+3} \) should read \(n + \lambda - t + 1 - b_{p+2} \).

In Eq. (3.4) on page 524, the factor \((2n + \lambda)_{q+2} \) should read \((2n + \lambda)_{t+1} \).

The last equation of (3.5) (the same page) should read

\[
H_i(n; t) = \frac{(-1)^i(2n + \lambda)_i(n + \beta + 1)_i(n + \lambda + t - c_{q+2})}{(n + \lambda)_i(2n + \lambda + t + 1)_i(n + c_{q+2})}.
\]

On page 525, the right-hand member of the inequality in line 12 from above should read \(-1\).

On page 526, line 2 from below, the parameter \(k - 1 - b_{p+2} \) of the function \(_p^4 \mathrm{F}_{p+3} \) should read \(k - 1 + b_{p+2} \).

On page 527, line 6 from below, the parameter \(k - 1 - b_{p+2} \) of the function \(_p^4 \mathrm{F}_{p+3} \) should read \(k - 1 + b_{p+2} \).

In the second formula of (3.28), page 529, the expression \(\Gamma(m + n + 1 - a_j) \) should read \(\Gamma(m + n + 1 + a_j) \).

On page 530, line 5 from below, the parameter \(h + \lambda + 1 - a_p \) of the function \(_p^2 \mathrm{F}_{p+1} \) should read \(n + \lambda + 1 - a_p \).

On page 531, line 3 from below, the parameter \(1 + d_j - c_{q+2} \) of the function \(_q^2 \mathrm{F}_{q+1} \) should read \(1 - d_j + c_{q+2} \).

On page 534, in the first line of Eq. (4.6), the factor \((n + a) \) should read \((n + a - 1) \).

On page 534, in the last displayed formula, \(\lambda = \alpha + \beta \) should be replaced by \(\lambda := \alpha + \beta + 1 \).

Stanislaw Lewanowicz

Institute of Computer Science
University of Wrocław
51-151 Wrocław, Poland

The formula for $a_{n,k}(0)$ in Theorem 1, p. 554, should be replaced by

$$a_{n,k}(0) = \frac{(-1)^k}{\binom{1}{k+1}} \sum_{m=0}^{n} \theta_m(f, T_{2m}) a_m^{(n)}(0),$$

where $\theta_0 = 1$ and $\theta_m = 2$, when $m \geq 1$.

G. V. MILOVANOVIĆ

Faculty of Electronic Engineering
Department of Mathematics
University of Niš
P. O. Box 73
18 000 Niš, Yugoslavia

p. 245, Figure 2 : Turn clockwise through the angle $\pi/2$.

p. 248, l. 20 : Read $\leq \pi/2$ instead of $< \pi/2$.

p. 248, l. 2↑ : Inside the parentheses insert $\chi\left(y - \sqrt{r^2 - (x - k)^2}\right)$

where χ is the characteristic function of \mathbb{Z}.

p. 249, l. 19 and 20 : Instead of $N(r^2)$ read $\left[N(r^2)\right]^{1/2}$, twice.

FRANÇOIS GRAMAIN

Département de Mathématiques
Université P. et M. Curie
4 Place Jussieu
75230 Paris Cedex 05, France