Crosswind smear and pointwise errors in streamline diffusion finite element methods

Authors:
C. Johnson, A. H. Schatz and L. B. Wahlbin

Journal:
Math. Comp. **49** (1987), 25-38

MSC:
Primary 65N30; Secondary 35B25

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890252-8

MathSciNet review:
890252

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a model convection-dominated singularly perturbed convection-diffusion problem, it is shown that crosswind smear in the numerical streamline diffusion finite element method is minimized by introducing a judicious amount of artificial crosswind diffusion. The ensuing method with piecewise linear elements converges with a pointwise accuracy of almost under local smoothness assumptions.

**[1]**O. Axelsson & W. Layton,*Defect Correction Methods for Convection Dominated Convection-Diffusion Problems*, Technical report, University of Nijmegen. (To appear.) MR**1070965 (92a:65272)****[2]**A. N. Brooks & T. J. R. Hughes, "Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,"*Comput. Methods Appl. Mech. Engrg.*, v. 32, 1982, pp. 199-259. MR**679322 (83k:76005)****[3]**J. Douglas, Jr., T. Dupont & L. B. Wahlbin, "The stability in of the projection into finite element function spaces,"*Numer. Math.*, v. 23, 1975, pp. 193-197. MR**0388799 (52:9633)****[4]**W. Eckhaus, "Boundary layers in linear elliptic singular perturbation problems,"*SIAM Rev.*, v. 14, 1972, pp. 225-270. MR**0600325 (58:29072)****[5]**W. Eckhaus & E. M. De Jager, "Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type,"*Arch. Rational Mech. Anal.*, v. 23, 1966, pp. 26-86. MR**0206464 (34:6283)****[6]**R. Gore, "The dead do tell tales at Vesuvius,"*National Geographic*, v. 165, no. 5 (May 1984), pp. 557-613.**[7]**T. J. R. Hughes & A. N. Brooks, "A multidimensional upwind scheme with no crosswind diffusion," in*Finite Element Methods for Convection Dominated Flows*(T. J. R. Hughes, ed.), AMD, Vol. 34, ASME, New York, N. Y., 1979, pp. 19-35. MR**571681 (81f:76040)****[8]**C. Johnson & U. Nävert, An analysis of some finite element methods for advection-diffusion problems," in*Analytical and Numerical Approaches to Asymptotic Problems in Analysis*(O. Axelsson, L. S. Frank, and A. van der Sluis, eds.), North-Holland, Amsterdam, 1981, pp. 99-116. MR**605502 (82e:65127)****[9]**C. Johnson, U. Nävert, & J. Pitkäranta, "Finite element methods for linear hyperbolic problems,"*Comput. Methods Appl. Mech. Engrg.*, v. 45, 1984, pp. 285-312. MR**759811 (86a:65103)****[10]**C. Johnson & J. Saranen, "Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations,"*Math. Comp.*, v. 47, 1986, pp. 1-18. MR**842120 (88b:65133)****[11]**J. L. Lions,*Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal*, Springer-Verlag, Berlin and New York, 1973. MR**0600331 (58:29078)****[12]**U. Nävert,*A Finite Element Method for Convection-Diffusion Problems*, Thesis, Chalmers University of Technology and University of Gothenburg, 1982.**[13]**J. Pitkäranta, Personal communication on numerical experiments.**[14]**G. D. Raithby & K. E. Torrance, "Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow,"*Comput. & Fluids*, v. 2, 1974, pp. 191-206. MR**0345431 (49:10167)****[15]**L. B. Wahlbin, "A dissipative Galerkin method for the numerical solution of first order hyperbolic equations," in*Mathematical Aspects of Finite Elements in Partial Differential Equations*(C. deBoor, ed.), Academic Press, New York, 1974, pp. 147-169. MR**0658322 (58:31929)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
35B25

Retrieve articles in all journals with MSC: 65N30, 35B25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890252-8

Keywords:
Finite element method,
convection dominated

Article copyright:
© Copyright 1987
American Mathematical Society