Steady state computations for wave propagation problems

Authors:
Björn Engquist and Bertil Gustafsson

Journal:
Math. Comp. **49** (1987), 39-64

MSC:
Primary 65M10; Secondary 76-08

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890253-X

MathSciNet review:
890253

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The behavior of difference approximations of hyperbolic partial differential equations as time is studied. The rate of convergence to steady state is analyzed theoretically and expe imentally for the advection equation and the linearized Euler equations. The choice of difference formulas and boundary conditions strongly influences the rate of convergence in practical steady state calculations. In particular it is shown that upwind difference methods and characteristic boundary conditions have very attractive convergence properties.

**[1]**Björn Engquist and Stanley Osher,*Stable and entropy satisfying approximations for transonic flow calculations*, Math. Comp.**34**(1980), no. 149, 45–75. MR**551290**, https://doi.org/10.1090/S0025-5718-1980-0551290-1**[2]**Lars-E. Eriksson and Arthur Rizzi,*Computer-aided analysis of the convergence to steady state of discrete approximations to the Euler equations*, J. Comput. Phys.**57**(1985), no. 1, 90–128. MR**785090**, https://doi.org/10.1016/0021-9991(85)90054-3**[3]**L. Ferm & B. Gustafsson, "A down-stream boundary procedure for the Euler equations,"*Comput. & Fluids*, v. 10, 1982, pp. 261-276.**[4]**M. B. Giles,*Eigenmode Analysis of Unsteady One-Dimensional Euler Equations*, ICASE Report No. 83-47, 1983.**[5]**S. K. Godunov,*A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics*, Mat. Sb. (N.S.)**47 (89)**(1959), 271–306 (Russian). MR**0119433****[6]**Heinz-Otto Kreiss,*Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math.**23**(1970), 277–298. MR**0437941**, https://doi.org/10.1002/cpa.3160230304**[7]**Cathleen S. Morawetz,*The decay of solutions of the exterior initial-boundary value problem for the wave equation*, Comm. Pure Appl. Math.**14**(1961), 561–568. MR**0132908**, https://doi.org/10.1002/cpa.3160140327**[8]**Cathleen S. Morawetz,*Decay for solutions of the exterior problem for the wave equation*, Comm. Pure Appl. Math.**28**(1975), 229–264. MR**0372432**, https://doi.org/10.1002/cpa.3160280204**[9]**Cathleen S. Morawetz, James V. Ralston, and Walter A. Strauss,*Decay of solutions of the wave equation outside nontrapping obstacles*, Comm. Pure Appl. Math.**30**(1977), no. 4, 447–508. MR**0509770**, https://doi.org/10.1002/cpa.3160300405**[10]**Joseph Oliger and Arne Sundström,*Theoretical and practical aspects of some initial boundary value problems in fluid dynamics*, SIAM J. Appl. Math.**35**(1978), no. 3, 419–446. MR**0521943**, https://doi.org/10.1137/0135035**[11]**Stanley Osher and Fred Solomon,*Upwind difference schemes for hyperbolic systems of conservation laws*, Math. Comp.**38**(1982), no. 158, 339–374. MR**645656**, https://doi.org/10.1090/S0025-5718-1982-0645656-0**[12]**P. L. Roe,*Approximate Riemann solvers, parameter vectors, and difference schemes*, J. Comput. Phys.**43**(1981), no. 2, 357–372. MR**640362**, https://doi.org/10.1016/0021-9991(81)90128-5**[13]**Eli Turkel,*Progress in computational physics*, Comput. & Fluids**11**(1983), no. 2, 121–144. MR**701941**, https://doi.org/10.1016/0045-7930(83)90006-3**[14]**Eli Turkel,*Acceleration to a steady state for the Euler equations*, Numerical methods for the Euler equations of fluid dynamics (Rocquencourt, 1983) SIAM, Philadelphia, PA, 1985, pp. 281–311. MR**825504**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
76-08

Retrieve articles in all journals with MSC: 65M10, 76-08

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890253-X

Article copyright:
© Copyright 1987
American Mathematical Society