TVB uniformly high-order schemes for conservation laws

Author:
Chi-Wang Shu

Journal:
Math. Comp. **49** (1987), 105-121

MSC:
Primary 65M05; Secondary 35L65, 65M10

MathSciNet review:
890256

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the computation of conservation laws , TVD (total-variation-diminishing) schemes have been very successful. But there is a severe disadvantage of all TVD schemes: They must degenerate locally to first-order accuracy at nonsonic critical points. In this paper we describe a procedure to obtain TVB (total-variation-bounded) schemes which are of uniformly high-order accuracy in space including at critical points. Together with a TVD high-order time discretization (discussed in a separate paper), we may have globally high-order in space and time TVB schemes. Numerical examples are provided to illustrate these schemes.

**[1]**Ami Harten,*High resolution schemes for hyperbolic conservation laws*, J. Comput. Phys.**49**(1983), no. 3, 357–393. MR**701178**, 10.1016/0021-9991(83)90136-5**[2]**Ami Harten,*On a class of high resolution total-variation-stable finite-difference schemes*, SIAM J. Numer. Anal.**21**(1984), no. 1, 1–23. With an appendix by Peter D. Lax. MR**731210**, 10.1137/0721001**[3]**Ami Harten,*Preliminary results on the extension of ENO schemes to two-dimensional problems*, Nonlinear hyperbolic problems (St. Etienne, 1986) Lecture Notes in Math., vol. 1270, Springer, Berlin, 1987, pp. 23–40. MR**910102**, 10.1007/BFb0078315**[4]**Ami Harten and Stanley Osher,*Uniformly high-order accurate nonoscillatory schemes. I*, SIAM J. Numer. Anal.**24**(1987), no. 2, 279–309. MR**881365**, 10.1137/0724022**[5]**Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy,*Uniformly high-order accurate essentially nonoscillatory schemes. III*, J. Comput. Phys.**71**(1987), no. 2, 231–303. MR**897244**, 10.1016/0021-9991(87)90031-3**[6]**Stanley Osher and Sukumar Chakravarthy,*High resolution schemes and the entropy condition*, SIAM J. Numer. Anal.**21**(1984), no. 5, 955–984. MR**760626**, 10.1137/0721060**[7]**Stanley Osher and Sukumar Chakravarthy,*Very high order accurate TVD schemes*, Oscillation theory, computation, and methods of compensated compactness (Minneapolis, Minn., 1985) IMA Vol. Math. Appl., vol. 2, Springer, New York, 1986, pp. 229–274. MR**869827**, 10.1007/978-1-4613-8689-6_9**[8]**P. L. Roe,*Approximate Riemann solvers, parameter vectors, and difference schemes*, J. Comput. Phys.**43**(1981), no. 2, 357–372. MR**640362**, 10.1016/0021-9991(81)90128-5**[9]**C. Shu, "TVD time discretization I--Steady state calculations." (Preprint.)**[10]**C. Shu, "TVD time discretization II--Time dependent problems." (Preprint.)**[11]**Chi-Wang Shu,*TVB boundary treatment for numerical solutions of conservation laws*, Math. Comp.**49**(1987), no. 179, 123–134. MR**890257**, 10.1090/S0025-5718-1987-0890257-7

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05,
35L65,
65M10

Retrieve articles in all journals with MSC: 65M05, 35L65, 65M10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1987-0890256-5

Article copyright:
© Copyright 1987
American Mathematical Society