Piecewise cubic curve-fitting algorithm

Author:
Zheng Yan

Journal:
Math. Comp. **49** (1987), 203-213

MSC:
Primary 65D10

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890262-0

MathSciNet review:
890262

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a piecewise cubic curve fitting algorithm which preserves monotonicity of the data. The algorithm has a higher order of convergence than the Fritsch-Carlson algorithm and is simpler than the Eisenstat-Jackson-Lewis algorithm.

**[1]**H. Akima, "A new method of interpolation and smooth curve fitting based on local procedures,"*J. Assoc. Comput. Mach.*, v. 17, 1970, pp. 589-602.**[2]**C. de Boor, "A practical guide to splines,"*Applied Mathematical Sciences*, Vol. 27, Springer-Verlag, Berlin and New York, 1978. MR**507062 (80a:65027)****[3]**S. C. Eisenstat, K. R. Jackson & J. W. Lewis, "The order of monotone piecewise cubic interpolation,"*SIAM J. Numer. Anal.*, v. 22, 1985, pp. 1220-1237. MR**811195 (87d:65014)****[4]**F. N. Fritsch & R. E. Carlson, "Monotone piecewise cubic interpolation,"*SIAM J. Numer. Anal.*, v. 17, 1980, pp. 238-246. MR**567271 (81g:65012)****[5]**D. F. McAllister & J. A. Roulier, "An algorithm for computing a shape-preserving osculatory quadratic spline,"*ACM Trans. Math. Software*, v. 7, 1981, pp. 331-347. MR**630439 (82h:65009)****[6]**M. H. Schultz,*Spline Analysis*, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR**0362832 (50:15270)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D10

Retrieve articles in all journals with MSC: 65D10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890262-0

Keywords:
Curve fitting algorithm,
monotonicity preserving,
cubic spline

Article copyright:
© Copyright 1987
American Mathematical Society