The Faber polynomials for circular sectors

Authors:
John P. Coleman and Russell A. Smith

Journal:
Math. Comp. **49** (1987), 231-241, S1

MSC:
Primary 30C30; Secondary 30E10, 65D20, 65E05

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890264-4

MathSciNet review:
890264

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Faber polynomials for a region of the complex plane, which are of interest as a basis for polynomial approximation of analytic functions, are determined by a conformal mapping of the complement of that region to the complement of the unit disc. We derive this conformal mapping for a circular sector , where , and obtain a recurrence relation for the coefficients of its Laurent expansion about the point at infinity. We discuss the computation of the coefficients of the Faber polynomials of degree 1 to 15, which are tabulated here for sectors of half-angle , , , , , and , and we give explicit expressions, in terms of , for the polynomials of degree . The norms of Faber polynomials are tabulated and are compared with those of the Chebyshev polynomials for the same regions.

**[1]**J. P. Coleman, "Polynomial approximations in the complex plane,"*J. Comput. Appl. Math.*(In press.)**[2]**J. H. Curtiss,*Faber polynomials and the Faber series*, Amer. Math. Monthly**78**(1971), 577–596. MR**0293104**, https://doi.org/10.2307/2316567**[3]**S. W. Ellacott,*Computation of Faber series with application to numerical polynomial approximation in the complex plane*, Math. Comp.**40**(1983), no. 162, 575–587. MR**689474**, https://doi.org/10.1090/S0025-5718-1983-0689474-7**[4]**G. H. Elliott,*The Construction of Chebyshev Approximations in the Complex Plane*, Ph.D. Thesis, University of London, 1978.**[5]**Dieter Gaier,*Vorlesungen über Approximation im Komplexen*, Birkhäuser Verlag, Basel-Boston, Mass., 1980 (German). MR**604011****[6]**K. O. Geddes and J. C. Mason,*Polynomial approximation by projections on the unit circle*, SIAM J. Numer. Anal.**12**(1975), 111–120. MR**0364977**, https://doi.org/10.1137/0712011**[7]**U. Grothkopf and G. Opfer,*Complex Chebyshev polynomials on circular sectors with degree six or less*, Math. Comp.**39**(1982), no. 160, 599–615. MR**669652**, https://doi.org/10.1090/S0025-5718-1982-0669652-2**[8]**H. Kober,*Dictionary of conformal representations*, Dover Publications, Inc., New York, N. Y., 1952. MR**0049326****[9]**J. N. Lyness & G. Sande, "Algorithm 413: Evaluation of normalized Taylor coefficients of an analytic function,"*Comm. ACM*, v. 14, 1971, pp. 669-675.**[10]**A. I. Markushevich,*Theory of Functions of a Complex Variable*, Chelsea, New York, 1977.**[11]**Ch. Pommerenke,*Über die Faberschen Polynome schlichter Funktionen*, Math. Z.**85**(1964), 197–208 (German). MR**0168772**, https://doi.org/10.1007/BF01112141**[12]**V. I. Smirnov and N. A. Lebedev,*Functions of a complex variable: Constructive theory*, Translated from the Russian by Scripta Technica Ltd, The M.I.T. Press, Cambridge, Mass., 1968. MR**0229803****[13]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**

J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588**

Retrieve articles in *Mathematics of Computation*
with MSC:
30C30,
30E10,
65D20,
65E05

Retrieve articles in all journals with MSC: 30C30, 30E10, 65D20, 65E05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890264-4

Article copyright:
© Copyright 1987
American Mathematical Society