Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Asymptotic expansions of integrals of certain rapidly oscillating functions


Authors: U. Banerjee, L. J. Lardy and A. Lutoborski
Journal: Math. Comp. 49 (1987), 243-249
MSC: Primary 41A55; Secondary 41A60
DOI: https://doi.org/10.1090/S0025-5718-1987-0890265-6
MathSciNet review: 890265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An expansion in terms of powers of $ {m^{ - 1}}$ is given for integrals of the form $ \smallint _0^1f(x)\bar w(mx)\,dx$, where m is a positive integer, $ \bar w(mx)$ is an integrable rapidly oscillating function with period $ {m^{ - 1}}$, and $ f(x)$ is a smooth function.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
  • [2] A. Bensoussan, J. L. Lions & G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. MR 503330 (82h:35001)
  • [3] P. J. Davis, Interpolation and Approximation, Dover, New York, 1975. MR 0380189 (52:1089)
  • [4] V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962. MR 0144464 (26:2008)
  • [5] J. N. Lyness, "The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula, Part I. Functions whose early derivatives are continuous," Math. Comp., v. 24, 1970, pp. 101-135. MR 0260230 (41:4858)
  • [6] H. J. Stetter, "Numerical approximation of Fourier transforms," Numer. Math., v. 8, 1966, pp. 235-249. MR 0198716 (33:6870)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A55, 41A60

Retrieve articles in all journals with MSC: 41A55, 41A60


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0890265-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society