Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the asymptotic evaluation of $ \int\sp {\pi/2}\sb 0J\sp 2\sb 0(\lambda\,{\rm sin}\,x)dx$


Authors: Basil J. Stoyanov and Richard A. Farrell
Journal: Math. Comp. 49 (1987), 275-279
MSC: Primary 41A60; Secondary 65D30
MathSciNet review: 890269
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of the integral

$\displaystyle I(\lambda ) = \int_0^{\pi /2} {J_0^2(\lambda \sin x)\,dx} $

is investigated, where $ {J_0}(x)$ is the zeroth-order Bessel function of the first kind and $ \lambda $ is a large positive parameter. A practical analytical expression of the integral at large $ \lambda $ is obtained and the leading term is $ (\ln \lambda )/(\lambda \pi )$.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun, editors, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series 55, Washington, D. C., 1970.
  • [2] Alexander Apelblat, Table of definite and infinite integrals, Physical Sciences Data, vol. 13, Elsevier Scientific Publishing Co., Amsterdam, 1983. MR 902582 (88i:00013)
  • [3] N. Bleistein & R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975.
  • [4] Herbert Bristol Dwight, Tables of integrals and other mathematical data, 4th ed, The Macmillan Company, New York, 1961. MR 0129577 (23 #B2613)
  • [5] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 0078494 (17,1202c)
  • [6] I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.
  • [7] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, N. J., 1975.
  • [8] Yudell L. Luke, Integrals of Bessel functions, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR 0141801 (25 #5198)
  • [9] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 (6,64a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A60, 65D30

Retrieve articles in all journals with MSC: 41A60, 65D30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1987-0890269-3
PII: S 0025-5718(1987)0890269-3
Keywords: Asymptotic expansion, Bessel functions
Article copyright: © Copyright 1987 American Mathematical Society