Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A method for computing the Iwasawa $ \lambda$-invariant


Authors: R. Ernvall and T. Metsänkylä
Journal: Math. Comp. 49 (1987), 281-294
MSC: Primary 11R29; Secondary 11R20, 11R23, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1987-0890270-X
MathSciNet review: 890270
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a method for computing the minus-part of the Iwasawa $ \lambda $-invariant of an Abelian field K. Applying this method, we have computed $ {\lambda ^ - }$ for several odd primes p when K runs through a large number of quadratic extensions of the pth cyclotomic field. A report on these computations and an analysis of the results is included.


References [Enhancements On Off] (What's this?)

  • [1] R. Ernvall, "Generalized Bernoulli numbers, generalized irregular primes, and class number," Ann. Univ. Turku. Ser. A I, No. 178, 1979, 72 pp. MR 533377 (80m:12002)
  • [2] R. Ernvall & T. Metsänkylä, "Cyclotomic invariants and E-irregular primes," Math. Comp., v. 32, 1978, pp. 617-629. MR 482273 (80c:12004a)
  • [3] R. Gold, "Examples of Iwasawa invariants," Acta Arith. v. 26, 1974, pp. 21-32. MR 0347771 (50:272)
  • [4] R. Gold, "Examples of Iwasawa invariants, II," Acta Arith., v. 26, 1975, pp. 232-240. MR 0374085 (51:10285)
  • [5] F. H. Hao & C. J. Parry, "Generalized Bernoulli numbers and m-regular primes," Math. Comp., v. 43, 1984, pp. 273-288. MR 744938 (85h:11062)
  • [6] S. Kobayashi, "Calcul approché de la série d'Iwasawa pour les corps quadratiques $ (p = 3)$," Number Theory, 1981-82 and 1982-83, Exp. No. 4, 68 pp., Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1983.
  • [7] H. W. Leopoldt, "Eine Verallgemeinerung der Bernoullischen Zahlen," Abh. Math. Sem. Univ. Hamburg, v. 22, 1958, pp. 131-140. MR 0092812 (19:1161e)
  • [8] T. Metsänkylä, "Iwasawa invariants and Kummer congruences," J. Number Theory, v. 10, 1978, pp. 510-522. MR 515058 (80d:12007)
  • [9] I. Sh. Slavutskii, "Local properties of Bernoulli numbers and a generalization of the Kummer-Vandiver theorem," Izv. Vyssh. Uchebn. Zaved. Mat., No. 3 (118), 1972, pp. 61-69. (Russian) MR 0300991 (46:151)
  • [10] S. S. Wagstaff, Jr., "The irregular primes to 125000," Math. Comp., v. 32, 1978, pp. 583-591. MR 0491465 (58:10711)
  • [11] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, Berlin and New York, 1982. MR 718674 (85g:11001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R29, 11R20, 11R23, 11Y40

Retrieve articles in all journals with MSC: 11R29, 11R20, 11R23, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0890270-X
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society