Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A note on elliptic curves over finite fields

Author: Hans-Georg Rück
Journal: Math. Comp. 49 (1987), 301-304
MSC: Primary 11G20; Secondary 14G15, 14K15
MathSciNet review: 890272
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let E be an elliptic curve over a finite field k and let $ E(k)$ be the group of k-rational points on E. We evaluate all the possible groups $ E(k)$ where E runs through all the elliptic curves over a given fixed finite field k.

References [Enhancements On Off] (What's this?)

  • [1] M. Deuring, "Die Typen der Multiplikatorenringe elliptischer Funktionenkörper," Abh. Math. Sem. Hamburg, v. 14, 1941, pp. 197-272. MR 0005125 (3:104f)
  • [2] J. Tate, "Endomorphisms of abelian varieties over finite fields," Invent. Math., v. 2, 1966, pp. 134-144. MR 0206004 (34:5829)
  • [3] J. Tate, Classes d'Isogènie des Variétés Abèliennes sur un Corps Fini (d'après T. Honda), Séminaire Bourbaki, Exposé 352, Benjamin, New York, 1968/69.
  • [4] W. Waterhouse, "Abelian varieties over finite fields," Ann. Sci. École Norm. Sup. (4), v. 2, 1969, pp. 521-560. MR 0265369 (42:279)
  • [5] A. Well, Variétés Abèliennes et Courbes Algébriques, Hermann, Paris, 1948.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11G20, 14G15, 14K15

Retrieve articles in all journals with MSC: 11G20, 14G15, 14K15

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society