A third-order boundary condition for the exterior Stokes problem in three dimensions

Author:
Georges H. Guirguis

Journal:
Math. Comp. **49** (1987), 379-389

MSC:
Primary 65N30; Secondary 76-08, 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906177-5

MathSciNet review:
906177

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We approximate the Stokes operator on an exterior domain in three dimensions by a truncated problem on a finite subdomain. A third-order artificial boundary condition is introduced. We discuss the approximating behavior of the truncated problem and its discretization in a finite element space. Combined errors arising from truncation and discretization are considered.

**[1]**R. A. Adams,*Sobolev Spaces*, Academic Press, New York, 1975. MR**0450957 (56:9247)****[2]**J. Boland,*Finite Element and the Divergence Constraint for Viscous Flow*, Ph.D. thesis, Carnegie-Mellon University, 1983.**[3]**F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,"*RAIRO Anal. Numér. Sér. Rouge*, v. 8, 1974, pp. 129-151. MR**0365287 (51:1540)****[4]**M. Cantor, "Numerical treatment of potential type equations on : Theoretical considerations,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 72-85. MR**687368 (84g:65144)****[5]**P. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[6]**M. Crouzeix & P. Raviart, "Conforming and non-conforming finite element methods for solving the stationary Stokes equation,"*RAIRO Anal. Numér. Sér. Rouge*, v. 7, 1973, pp. 33-75. MR**0343661 (49:8401)****[7]**V. Girault & P. Raviart,*Finite Element Approximation of the Navier-Stokes Equations*, Lecture Notes in Math., vol. 749, Springer-Verlag, Berlin and New York, 1979. MR**548867 (83b:65122)****[8]**C. Goldstein, "The finite element method with non-uniform mesh sizes for unbounded domains,"*Math. Comp.*, v. 36, 1981, pp. 387-404. MR**606503 (82b:65121)****[9]**G. H. Guirguis, "On the existence, uniqueness and regularity of the exterior Stokes problem in ,"*Comm. Partial Differential Equations*, v. 11, 1986, pp. 567-594. MR**837276 (87j:35296)****[10]**G. H. Guirguis & M. D. Gunzburger, "On the approximation of the exterior Stokes problem in three dimensions,"*RAIRO Anal. Numér.*(To appear.) MR**908240 (88m:76028)****[11]**G. H. Guirguis,*On the Existence, Uniqueness, Regularity and Approximation of the Exterior Stokes Problem in*, Ph.D. Thesis, University of Tennessee, Knoxville, 1983.**[12]**Alvin Bayliss, Max Gunzburger & Eli Turkel, "Boundary conditions for the numerical solution of elliptic equations in exterior regions,"*SIAM J. Appl. Math.*, v. 42, 1982, pp. 430-451. MR**650234 (84h:65108)****[13]**B. Hanouzet, "Espaces de Sobolev avec poids. Application a un problème de Dirichlet dans un demi-espace,"*Rend. Sem. Mat. Univ. Padova*, v. 46, 1971, pp. 227-272. MR**0310417 (46:9517)****[14]**O. Ladyzhenskaya,*The Mathematical Theory of Viscous Incompressible Flow*, Gordon and Breach, New York, 1969. MR**0254401 (40:7610)****[15]**J. L. Lions & E. Magenes,*Non-Homogeneous Boundary Value Problems and Applications*, Springer-Verlag, New York, 1972.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76D07

Retrieve articles in all journals with MSC: 65N30, 76-08, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906177-5

Article copyright:
© Copyright 1987
American Mathematical Society