Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the convergence of collocation methods for boundary integral equations on polygons


Authors: Martin Costabel and Ernst P. Stephan
Journal: Math. Comp. 49 (1987), 461-478
MSC: Primary 65R20; Secondary 65D07, 65N35
DOI: https://doi.org/10.1090/S0025-5718-1987-0906182-9
MathSciNet review: 906182
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The integral equations encountered in boundary element methods are frequently solved numerically using collocation with spline trial functions. Convergence proofs and error estimates for these approximation methods have been only available in the following cases: Fredholm integral equations of the second kind [4], [7], one-dimensional pseudodifferential equations and singular integral equations with piecewise smooth coefficients on smooth curves [2], [3], [17], [26]--[29], and some special results on the classical Neumann integral equation of potential theory for polygonal plane domains [5], [8], [9]. Here we give convergence proofs for collocation with piecewise linear trial functions for Neumann's integral equation and Symm's integral equation on plane curves with corners. We derive asymptotic error estimates in Sobolev norms and analyze the effect of graded meshes.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR 0443383 (56:1753)
  • [2] D. N. Arnold & W. L. Wendland, "On the asymptotic convergence of collocation methods," Math. Comp., v. 41, 1983, pp. 349-381. MR 717691 (85h:65254)
  • [3] D. N. Arnold & W. L. Wendland, "The convergence of spline collocation for strongly elliptic equations on curves," Numer. Math., v. 47, 1985, pp. 317-341. MR 808553 (87f:65142)
  • [4] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, Pa., 1976. MR 0483585 (58:3577)
  • [5] K. E. Atkinson & F. R. de Hoog, "Collocation methods for a boundary integral equation on a wedge," in Treatment of Integral Equations by Numerical Methods (C. T. H. Baker and B. F. Miller, eds.), Academic Press, New York, 1983.
  • [6] I. Babuška & M. B. Rosenzweig, "A finite element scheme for domains with corners," Numer. Math., v. 20, 1972, pp. 1-21. MR 0323129 (48:1487)
  • [7] C. T. H. Baker, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1977. MR 0467215 (57:7079)
  • [8] G. Bruhn & W. L. Wendland, "Über die näherungsweise Lösung von linearen Funktionalgleichungen," in Funktionalanalysis, Approximationstheorie, Numerische Mathematik (L. Collatz and H. Ehrmann, eds.), Birkhäuser, Basel, 1967.
  • [9] G. A. Chandler & I. G. Graham, "Product integration-collocation methods for non-compact integral operator equations." (To appear.)
  • [10] M. Costabel, "Boundary integral operators on curved polygons," Ann. Mat. Pura Appl. (4), v. 133, 1983, pp. 305-326. MR 725031 (85m:44001)
  • [11] M. Costabel & E. P. Stephan, "Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation," Mathematical Models and Methods in Mechanics, Banach Center Publications, vol. 15, PWN, Warsaw, 1985, pp. 175-251. MR 874845 (88f:35037)
  • [12] M. Costabel & E. P. Stephan, "The method of Mellin transformation for boundary integral equations on curves with corners," Numerical Solution of Singular Integral Equations, IMACS, 1984, pp. 95-100.
  • [13] M. Costabel & E. P. Stephan, "A direct boundary integral equation method for transmission problems," J. Math. Anal. Appl., v. 106, 1985, pp. 367-413. MR 782799 (86f:76045)
  • [14] M. Costabel, E. P. Stephan & W. L. Wendland, "On boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain," Ann. Scuola Norm. Sup. Pisa (4), v. 10, 1983, pp. 197-241. MR 728434 (85f:35074)
  • [15] J. Elschner, "Galerkin methods with splines for singular integral equations over (0,1)," Numer. Math., v. 43, 1984, pp. 265-281. MR 736084 (85g:65133)
  • [16] I. C. Gohberg & I. A. Feldman, Convolution Equations and Projection Methods for Their Solution, Transl. Math. Monographs, vol. 41, Amer. Math. Soc., Providence, R. I., 1974. MR 0355675 (50:8149)
  • [17] R. Hagen & B. Silbermann, "A finite element collocation method for bisingular integral equations," Applicable Anal., v. 19, 1985, pp. 117-135. MR 800163 (87a:45014)
  • [18] S. Hildebrandt & E. Wienholtz, "Constructive proofs of representation theorems in separable Hubert space," Comm. Pure Appl. Math., v. 17, 1964, pp. 369-373. MR 0166608 (29:3881)
  • [19] M. A. Krasnoselskii, et al., Approximate Solution of Operator Equations, Noordhoff, Groningen, 1972.
  • [20] J. L. Lions & E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin and New York, 1972. MR 0350177 (50:2670)
  • [21] V. G. Maz'ya & T. O. Shaposhnikova, "Change of variables as an operator in a pair of Sobolev spaces," Vestnik Leningrad Univ. Math., v. 15, 1983, pp. 53-58.
  • [22] S. Prössdorf, "Ein Lokalisierungsprinzip in der Theorie der Spline-Approximation und einige Anwendungen," Math. Nachr., v. 119, 1984, pp. 239-255. MR 774194 (86d:41013)
  • [23] S. Prössdorf & B. Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, Teubner-Verlag, Leipzig, 1977. MR 0494817 (58:13602)
  • [24] S. Prössdorf & B. Silbermann, Gestörte Projektionsverfahren und einige ihrer Anwendungen, Abhandlungen der Akademie d. Wiss. der DDR, Abt. Mathematik, Nr. 6N, Akademie-Verlag, Berlin, 1978, pp. 229-237. MR 540463 (80e:65041)
  • [25] S. Prössdorf & J. Elschner, "Finite element methods for singular integral equations on an interval," Engrg. Anal., v. 1, 1984, pp. 83-87.
  • [26] S. Prössdorf & A. Rathsfeld, "A spline collocation method for singular integral equations with piecewise continuous coefficients," Integral Equations Operator Theory, v. 7, 1984, pp. 536-560. MR 757987 (85h:65276)
  • [27] J. Saranen & W. L. Wendland, "On the asymptotic convergence of collocation methods with spline functions of even degree," Math. Comp., v. 171, 1985, pp. 91-108. MR 790646 (86m:65159)
  • [28] G. Schmidt, "On spline collocation for singular integral equations," Math. Nachr., v. 111, 1983, pp. 177-196. MR 725777 (85f:65128)
  • [29] W. L. Wendland, "Boundary element methods and their asymptotic convergence," in Theoretical Acoustics and Numerical Techniques (P. Filippi, ed.), CISM Lectures 277, Springer, Wien-New York, 1983, pp. 135-216. MR 762829 (86f:65201)
  • [30] W. L. Wendland, "On the spline approximation of singular integral equations and one-dimensional pseudodifferential equations on closed curves," Numerical Solution of Singular Integral Equations, IMACS, 1984, pp. 113-119.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65R20, 65D07, 65N35

Retrieve articles in all journals with MSC: 65R20, 65D07, 65N35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0906182-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society