An A Posteriori Parameter Choice for Ordinary and Iterated Tikhonov Regularization of Ill-Posed Problems Leading to Optimal Convergence Rates

By Helmut Gfrerer*

Abstract. We propose an a posteriori parameter choice for ordinary and iterated Tikhonov regularization that leads to optimal rates of convergence towards the best approximate solution of an ill-posed linear operator equation in the presence of noisy data. Numerical examples are given.

1. Introduction. Let X, Y be real Hilbert spaces, $T: X \to Y$ a compact linear operator, $y \in Y$. Our aim is to obtain the “best approximate solution” of

$$ (1.1) \quad Tx = y $$

i.e., the unique element that has minimal norm among all minimizers of the residual $\|Tx - y\|$. If T^\dagger denotes the Moore-Penrose generalized inverse (see, e.g., [17]), the best approximate solution is given by $T^\dagger y$. For nonclosed range $R(T)$ of T, the problem of determining $T^\dagger y$ is ill posed. The best approximate solution exists only for $y \in D(T^\dagger) := R(T) + \mathbb{R} \delta_1$ (which we assume from now on) and depends discontinuously on the right-hand side. An important example is the (Fredholm) integral equation of the first kind

$$ (Tx)(t) := \int_0^1 k(t, s)x(s) \, ds = y(t), \quad t \in [0, 1], $$

where k is a nondegenerate L^2-kernel and $X = Y = L^2[0, 1]$. In the ill-posed case, the crux of the difficulty is that the data are only imprecisely known in general, that is, only some $y_\delta \in Y$ is available satisfying

$$ (1.2) \quad \|y - y_\delta\| \leq \delta, $$

where δ is an a priori known error level. Since T^\dagger is unbounded, $T^\dagger y_\delta$ is not a reasonable approximation to $T^\dagger y$, even if it exists. Because of this, one has to use “regularization methods” for approximating $T^\dagger y$. A widely used regularization method is Tikhonov regularization. For $\alpha > 0$ we denote by $x_{\alpha, \delta}$ the unique solution of

$$ (1.3) \quad (\alpha I + T^* T)x = T^* y_\delta. $$

Received February 28, 1986; revised February 11, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 65R20; Secondary 45L10.

*Parts of the work were supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (Project S 32/03).
It is well known (see, e.g., [3]) that if the “regularization parameter” α is chosen in dependence of δ such that $\lim_{\delta \to 0} \delta^2 \alpha(\delta)^{-1} = 0$ and $\lim_{\delta \to 0} \alpha(\delta) = 0$, then $\lim_{\delta \to 0} \|x_{\alpha(\delta), \delta} - T^* y\| = 0$. If the exact solution fulfills the smoothness property

$$T^* y \in R((T^* T)^{\nu})$$

for some $0 < \nu \leq 1$, then for an a priori choice of α such as

$$\alpha(\delta) = C \delta^{2/(2\nu + 1)}, \quad C > 0,$$

one obtains the convergence rate

$$\|x_{\alpha(\delta); \delta} - T^* y\| = O(\delta^{2\nu/(2\nu + 1)})$$

(see [19]). This convergence rate is best, $O(\delta^{2/3})$, for $\nu = 1$. A saturation result of Groetsch [11] says that a higher rate of convergence cannot be expected under higher smoothness assumptions and other choices of $\alpha(\delta)$. However, a higher convergence rate can be obtained by “iterated Tikhonov regularization” (see [14]), which is defined by the formulas

$$x^0_{\alpha(\delta); \delta} := 0; \quad (\alpha I + T^* T)x_{\alpha(\delta); \delta} = T^* y_{\delta} + \alpha x_{\alpha(\delta); \delta}^{-1}, \quad j = 1, \ldots, n.$$

If the smoothness condition (1.4) holds for some $0 < \nu \leq n$, then a parameter choice according to (1.5) yields a convergence rate

$$\|x_{\alpha(\delta); \delta} - T^* y\| = O(\delta^{2\nu/(2\nu + 1)})$$

which is best, $O(\delta^{2\nu/(2\nu + 1)})$, for $\nu = n$. Unfortunately, one cannot determine $\alpha(\delta)$ by (1.5) in practice, since the number ν depends on the unknown solution $T^* y$. Therefore, many authors suggest a posteriori methods to compute a reasonable value of α using the input data y_{δ} and the error level δ. A favorite choice of α is the so-called “discrepancy principle” due to Morozov [16], where $\alpha = \alpha(\delta)$ is computed as the unique solution of

$$\|Tx_{\alpha; \delta} - y_{\delta}\|^2 = \delta^2.$$

Arcangeli [1] proposes $\alpha = \alpha(\delta)$ as solution of

$$\|Tx_{\alpha; \delta} - y_{\delta}\|^2 = \delta^2 \alpha^{-1},$$

while Engl [4] (for a similar method; see Schock [20]) suggests choosing $\alpha = \alpha(\delta)$ as the unique root of

$$\|T^* Tx_{\alpha; \delta} - T^* y_{\delta}\|^2 = \delta^p \alpha^{-q}$$

with suitable constants p, q. Engl [5] applied his method also to iterated Tikhonov regularization.

All these methods do not yield the convergence rates given by (1.6). For Morozov’s, resp. Arcangeli’s approach, this is shown in [10], resp. [13]. Engl has to choose the parameters p and q in (1.11) in dependence of the unknown quantity ν to obtain the rates (1.6).

The aim of this paper is to give an a posteriori method for choosing the regularization parameter for iterated Tikhonov regularization, where no information about ν is used and the rates (1.8) are achieved, and even improved upon, for $\nu < n$. The difference is the replacement of the capital-\(O\) condition by the little-\(o\) condition.
The basic idea of our method is rather simple. Obviously, the best possible parameter choice would be such that the squared error $\|x^{\alpha,\delta}_{\alpha,\delta,m} - T^*y\|^2$ is minimized. Of course, this criterion is not applicable, but we will find a minimizer of some upper bound of the squared error.

At the end of Section 2 we investigate convergence rates for Morozov’s discrepancy principle (1.9). It is well known (see [12]) that a certain upper bound of the squared error is minimized precisely when the parameter is chosen according to (1.9). Using the same technique of proof as for our method, we will show that Morozov’s method yields also the convergence rates (1.6), but only for $\nu \leq 1/2$. In Section 3 we adapt the theory developed in Section 2 to make it applicable to practical computations. For this purpose, we consider approximations to the best approximate solution which lie in a finite-dimensional subspace V_m of X. More precisely, for each $\alpha > 0$ and $n \in \mathbb{N}$, we define $x^{\alpha,\delta,m}$ iteratively by the formulas

\begin{align*}
(1.12) \quad x^{0}_{\alpha,\delta,m} := 0; \quad (\alpha I + T^*T_m)x^{j}_{\alpha,\delta,m} = T^*y_{\delta} + \alpha x^{j-1}_{\alpha,\delta,m}, \quad j = 1, \ldots, n, \tag{1.12}
\end{align*}

where $T_m := TP_m$ and P_m is the orthogonal projector of X onto V_m. For $n = 1$, this is equivalent to the approaches of Groetsch [12], Engl and Neubauer [6] and closely related to Marti’s method [15].

Now the regularization parameter has to be chosen appropriately in dependence of the noise level δ and the subspace V_m. So Groetsch [12] applied the discrepancy principle to this finite-dimensional setting, whereas Engl and Neubauer [6] modified (1.11) to obtain finite-dimensional approximations. In view of known results, these methods seem to have the same disadvantages mentioned above for the infinite-dimensional case.

We give in Section 3 an a posteriori parameter choice $\alpha = \alpha(\delta, V_m, n)$ such that for $T^*y \in R((T^*T)^*)$ we have

\begin{align*}
\|x^{n}_{\alpha,\delta,m} - T^*y\| = \begin{cases}
\delta^{2\nu/(2\nu+1)} + o(\gamma_{m}^{2\nu}) & \text{if } 0 < \nu < 1/2, \\
n^{\nu/(2\nu+1)} + O(\gamma_{m}) & \text{if } 1/2 \leq \nu < n, \\
O(\delta^{2n/(2n+1)}) + O(\gamma_{m}) & \text{if } \nu \geq n,
\end{cases}
\end{align*}

where $\gamma_{m} = \|T(I - P_m)\|$ is a measure of how well T_m approximates T. Again, this method requires no information about ν and is numerically feasible in the sense that it depends on finitely many numerical parameters.

In Section 4 numerical examples are given which show that theory and practice agree quite well.

2. Optimal Parameter Choice for Iterated Tikhonov Regularization with Inexact Data. From now on we assume that $y \in D(T^*)$, $T^*y \neq 0$, and we wish to determine $x = T^*y$, having at our disposal only an approximation y_{δ} satisfying

\begin{align*}
(2.1) \quad \|y - y_{\delta}\|^2 \leq \delta^2 < \|Qy_{\delta}\|^2/C
\end{align*}

for some $C \geq 1$, where Q denotes the orthogonal projector onto $\overline{R(T)}$. We believe that condition (2.1) is not a severe restriction. It may be interpreted by saying that the relative error in the input data, $\delta/\|Qy_{\delta}\|$, is small. For $n \in \mathbb{N}$, $z \in Y$, $\alpha > 0$ we define

\begin{align*}
(2.2) \quad f_n(\alpha, z) := \alpha^{2n+1} \left\langle (\alpha I + TT^*)^{-(2n+1)} Qz, Qz \right\rangle.
\end{align*}
We further define the error functions

\[\varphi_n(\alpha) := \left\| x_n^\alpha - T^\dagger y \right\|^2, \quad \varphi_{n,\delta}(\alpha) = \left\| x_{n,\delta}^\alpha - T^\dagger y \right\|^2, \]

where \(x_n^\alpha \) is given by (1.7) with \(y \) instead of \(y_\delta \). The following lemma states some properties of these functions. Proofs of this and subsequent results are given in appendices in the Supplements section of this issue.

Lemma 2.1. For each \(z \in Y \) with \(Qz \neq 0 \) and each \(n \in \mathbb{N} \), the function \(\alpha \to f_n(\alpha, z) \) is continuous, strictly increasing on \((0, \infty)\) and \(\lim_{\alpha \to 0} f_n(\alpha, z) = 0 \), \(\lim_{\alpha \to \infty} f_n(\alpha, z) = \|Qz\|^2 \). For each \(n \in \mathbb{N} \), the function \(\alpha \to \varphi_n(\alpha) \) is continuously differentiable and strictly increasing on \((0, \infty)\). Furthermore, there holds

\[\alpha^2 \varphi_n'(\alpha) = 2n f_n(\alpha, y), \quad \lim_{\alpha \to 0} \varphi_n(\alpha) = 0, \quad \lim_{\alpha \to \infty} \varphi_n(\alpha) = \|T^\dagger y\|^2. \]

Proof. Cf. Appendix 2. \(\square \)

Application of the first part of Lemma 2.1 and the Intermediate Value Theorem yields the following corollary.

Corollary 2.2. Suppose that \(y, y_\delta \in Y \) and \(\delta > 0 \) satisfy (2.1) for some \(C \geq 1 \). Then for each \(n \in \mathbb{N} \) there is a unique \(\alpha > 0 \) such that

\[f_n(\alpha, y_\delta) = C\delta^2. \]

From now on, we denote the unique \(\alpha \) determined by (2.4) by \(\alpha(\delta) \) (although it depends also on \(y_\delta \), \(C \), and \(n \)). An expression involving \(\alpha(\delta) \) will be understood in the sense that for fixed \(C \geq 1 \) and \(n \in \mathbb{N} \) it holds for all \(y_\delta \) satisfying (2.1) and the corresponding \(\alpha \) determined by (2.4).

The next theorem gives some motivation for our proposed parameter choice.

Theorem 2.3. Let \(n \in \mathbb{N} \) be fixed and suppose that \(y, y_\delta \in Y \) and \(\delta > 0 \) satisfy (2.1) for some \(C \geq 1 \). Then the function \(\varphi_{n,\delta}(\alpha) \) is strictly increasing for \(\alpha > \tilde{\alpha} \), where \(\tilde{\alpha} > 0 \) is the unique solution of \(f_n(\alpha, y_\delta) = \delta^2 \).

Proof. Using (2.3) and (1.7), we have

\[\varphi_{n,\delta}(\alpha) = \left\| \sum_{k=1}^{n} \alpha^{k-1}(\alpha I + T^*T)^{-k}T^*y_\delta - T^\dagger y \right\|^2. \]

It is easy to see that \(\varphi_{n,\delta}(\alpha) \) is continuously differentiable for \(\alpha > 0 \) and

\[\varphi_{n,\delta}'(\alpha) = 2\left(\sum_{k=1}^{n} \alpha^{k-1}(\alpha I + T^*T)^{-k}T^*y_\delta - T^\dagger y, \right. \]

\[\left. \sum_{k=1}^{n} \left((k-1)\alpha^{k-2}(\alpha I + T^*T)^{-k}T^*y_\delta \right) \right) \]

\[= -2n\left(\sum_{k=1}^{n} \alpha^{k-1}(\alpha I + T^*T)^{-k}T^*y_\delta - Qy, \alpha^{n-1}(\alpha I + T^*T)^{-(n+1)}Qy_\delta \right) \]

\[= 2n\left(\alpha^n(\alpha I + T^*T)^{-n}Qy_\delta - Qy_\delta + Qy, \alpha^{n-1}(\alpha I + T^*T)^{-(n+1)}Qy_\delta \right). \]
To prove our theorem, it suffices to show that $\varphi_{n,\delta}(\alpha) > 0$ for $\alpha > \bar{\alpha}$. But $\alpha > \bar{\alpha}$ implies by Lemma 2.1 that $f_n(\alpha, y_\delta) > f_n(\bar{\alpha}, y_\delta) = \delta^2$ and hence

$$f_n(\alpha, y_\delta) > \delta f_n(\alpha, y_\delta)^{1/2} \geq \|Q(y_\delta - y)\| f_n(\alpha, y_\delta)^{1/2}.$$

Since $\|a^{1/2}(\alpha I + TT^*)^{-1/2}\| \leq 1$, we obtain

$$f_n(\alpha, y_\delta)^{1/2} = \|Qy_\delta - Qy\| \cdot \|a^{n+1/2}(\alpha I + TT^*)^{-(n+1/2)}Qy_\delta\|.$$

This, together with (2.6), yields for $\alpha > \bar{\alpha}$,

$$f_n(\alpha, y_\delta) \geq (Qy_\delta - Qy, a^{n+1}(\alpha I + TT^*)^{-(n+1)}Qy_\delta).$$

By (2.5) this is equivalent to $(\alpha^2/2n)\varphi_{n,\delta}(\alpha) > 0$, and hence our theorem is proved. \(\square\)

Remark 2.4. Theorem 2.3 and the first part of Lemma 2.1 show that a choice $C = 1$ in (2.4) yields the best result among all possible choices of $C \geq 1$. However, for technical reasons, we also have to consider the case $C > 1$.

Our convergence analysis is mainly based on the following three lemmas, whose proofs are given in Appendix 2.

Lemma 2.5. Let $C > 1$, $C_1 := (C^{1/2} - 1)^2$, $C_2 := (1 + C^{1/2})^2$. Then for each $\delta > 0$, $y, y_\delta \in Y$ satisfying (2.1), and for each $n \in \mathbb{N}$, we have

$$C_1 \delta^2 \leq f_n(\alpha(\delta), y) \leq C_2 \delta^2.$$

Lemma 2.6. Let $\gamma > 0$. Then for all $\alpha > 0$ and all $n \in \mathbb{N}$ there holds

$$\varphi_{n,\delta}(\alpha) \leq 2/\min\{\gamma, 1\}(2\gamma n^2/\alpha + \varphi_n(\alpha)).$$

Lemma 2.7. Let $\gamma > 0, \delta > 0, n \in \mathbb{N}$. Then $\bar{\alpha}$ is a minimizer for the one-dimensional optimization problem

$$(2.7) \begin{array}{l}
\text{minimize } 2n\gamma \delta^2/\alpha + \varphi_n(\alpha) \\
\text{subject to } \alpha > 0
\end{array}$$

if and only if $f_n(\bar{\alpha}, y) = \gamma \delta^2$ holds.

We are now in a position to derive rates of convergence for our parameter choice.

Theorem 2.8. Let $C \geq 1, n \in \mathbb{N}$ be fixed. For each $\delta > 0$ and $y_\delta \in Y$ satisfying (2.1), let $x_{\alpha(\delta),\delta}^n$ be the result of iterated Tikhonov regularization of order n as described by (1.7). Then $\lim_{\delta \to 0} x_{\alpha(\delta),\delta}^n = T^*y$. If, further, T^*y is an element of $R((T^*T)^\nu)$ with $\nu > 0$, then

$$\|x_{\alpha(\delta),\delta}^n - T^*y\| = o(\delta^{2\nu/(2\nu+1)}) \quad \text{for } \nu < n$$

and

$$\|x_{\alpha(\delta),\delta}^n - T^*y\| = O(\delta^{2n/(2n+1)}) \quad \text{for } \nu \geq n.$$

Proof. First suppose $C > 1$; let C_1, C_2 be as in Lemma 2.5 and set $\gamma := f_n(\alpha(\delta), y)/\delta^2$. Thus $C_1 \leq \gamma \leq C_2$. By Lemma 2.7, $\alpha(\delta)$ is a minimizer for $2n\gamma \delta^2/\alpha + \varphi_n(\alpha)$. Thus we obtain, by Lemma 2.6,

$$\varphi_{n,\delta}(\alpha(\delta)) \leq 2/\min\{\gamma, 1\}(2n\gamma \delta^2/\alpha(\delta) + \varphi_n(\alpha(\delta)))$$

$$= 2/\min\{\gamma, 1\} \min\{2n\gamma \delta^2/\alpha + \varphi_n(\alpha): \alpha > 0\} \leq 2/\min\{C_1, 1\} \inf\{2nC_2 \delta^2/\alpha + \varphi_n(\alpha): \alpha > 0\}.$$
Using Lemma 2.1 and the Intermediate Value Theorem, it can be easily shown that for each \(\delta > 0 \) the equation

\[
\varphi_n(\beta) = 2 n \delta^2 / \beta
\]

has a unique solution, which we denote by \(\beta_n(\delta) \). Since \(\beta_n(\delta) \varphi_n(\beta_n(\delta)) = 2 n \delta^2 \), we have, together with Lemma 2.1, \(\lim_{\delta \to 0} \beta_n(\delta) = 0 \) and also \(\lim_{\delta \to 0} 2 n \delta^2 / \beta_n(\delta) = \lim_{\delta \to 0} \varphi_n(\beta_n(\delta)) = 0 \). Because of (2.8)

\[
(2.10) \quad \varphi_n(\alpha) \leq 2 / \min\{C_1, 1\} \left(2 n C_2 \delta^2 / \beta_n(\delta) + \varphi_n(\beta_n(\delta)) \right),
\]

and hence \(\lim_{\delta \to 0} x_n(\alpha, \delta) = T^\dagger y \).

Now assume that \(T^\dagger y \in R((T^*T)^\ast) \) with \(\nu > 0 \) and set \(\mu := \min\{\nu, n\} \). Then we get, from (2.9),

\[
\beta_n(\delta) \leq 2 n \delta^2 \beta_n(\delta) / \varphi_n(\beta_n(\delta))
\]

and hence

\[
\beta_n(\delta) = (2 n \delta^2)^{1/(1+2\mu)} \left[\beta_n(\delta)^{2\mu} / \varphi_n(\beta_n(\delta)) \right]^{1/(1+2\mu)}.
\]

Thus we have

\[
2 n \delta^2 / \beta_n(\delta) = (2 n \delta^2)^{2\mu/(1+2\mu)} \left[\varphi_n(\beta_n(\delta)) / \beta_n(\delta)^{2\mu} \right]^{1/(1+2\mu)}.
\]

We obtain from [18] that \(\varphi_n(\beta) = o(\beta^{2\mu}) \) for \(\mu < n \), resp. \(\varphi_n(\beta) = O(\beta^{2n}) \) for \(\mu = n \). This, together with \(\lim_{\delta \to 0} \beta_n(\delta) = 0 \), shows that

\[
2 n \delta^2 / \beta_n(\delta) = \varphi_n(\beta_n(\delta)) = o(\delta^{4\mu/(1+2\mu)}) \quad \text{for} \quad \nu = \mu < n,
\]

resp.

\[
2 n \delta^2 / \beta_n(\delta) = \varphi_n(\beta_n(\delta)) = O(\delta^{4\mu/(1+2\mu)}) \quad \text{for} \quad \nu > n = \mu.
\]

Because of (2.10) this implies our assertion for \(C > 1 \). For \(C = 1 \) the result follows from Remark 2.4. \(\square \)

Theorem 2.8 says that the convergence rate can be arbitrarily close to the desirable rate \(O(\delta) \) if the data are sufficiently smooth and \(n \) is chosen sufficiently large. However, our upper bound of the squared error, given by Lemma 2.6, involves the factor \(n \), and so it might be problematic to choose \(n \) too large. In particular, for given \(y_\delta \in Y \) and \(\delta > 0 \), the approximation error \(\|x_n(\delta, \delta) - T^\dagger y\| \) might become arbitrarily large if \(n \) tends to \(\infty \). However, our next theorem shows that this is not the case.

Theorem 2.9. For \(C > 1 \) let \(C_1, C_2 \) be as in Lemma 2.5. Then for each \(y_\delta \in Y \), \(\delta > 0 \) satisfying (2.1), and for each \(n \in \mathbb{N} \), there holds

\[
\varphi_n(\delta, \delta) \leq 2 (C_2 + 1) / \min\{C_1, 1\} \varphi_n(\beta_n(\delta)),
\]

where \(\beta_n(\delta) \) is given by (2.9). Further, if \(m < n \), then \(\varphi_n(\delta, \delta) \leq \varphi_m(\beta_m(\delta)) \) for all \(\delta > 0 \).

Proof. Cf. Appendix 2. \(\square \)

We now show that Morozov's discrepancy principle (1.9), under the smoothness assumption \(T^\dagger y \in R((T^*T)^\ast) \), yields the convergence rates \(o(\delta^{2\nu/(2\nu+1)}) \) for \(\nu < 1/2 \), resp. \(O(\delta^{1/2}) \) for \(\nu \geq 1/2 \). More precisely, suppose that

\[
(2.11) \quad y \in R(T),
\]
and that our approximate right-hand side y_δ satisfies

\[(2.12) \quad \|y - y_\delta\| < \delta < \|y_\delta\|.
\]

Then it is well known (see, e.g., [12, Theorem 3.3.1]) that (1.9) has a unique positive solution, which we denote again by $\alpha(\delta)$. Note that

\[T x_{\alpha,\delta} - y_\delta = TT^*(\alpha I + TT^*)^{-1}Qy_\delta - Qy_\delta - (I - Q)y_\delta
\]

\[(2.13) \quad = -\alpha(\alpha I + TT^*)^{-1}Qy_\delta - (I - Q)y_\delta,
\]

and hence $T^*(y_\delta - T x_{\alpha,\delta}) = \alpha x_{\alpha,\delta}$. Thus we obtain

\[
\|x_{\alpha,\delta} - T^t y\|^2 = \|x_{\alpha,\delta}\|^2 - 2/\alpha \langle T^*(y_\delta - T x_{\alpha,\delta}), T^t y \rangle + \|T^t y\|^2
\]

\[
= \|x_{\alpha,\delta}\|^2 - 2/\alpha \langle y_\delta - T x_{\alpha,\delta}, y \rangle + \|T^t y\|^2
\]

\[
= \|x_{\alpha,\delta}\|^2 - 2/\alpha \langle y_\delta - T x_{\alpha,\delta}, y_\delta \rangle + 2/\alpha \langle y_\delta - T x_{\alpha,\delta}, y_\delta - y \rangle + \|T^t y\|^2.
\]

Since

\[-\delta \|y_\delta - T x_{\alpha,\delta}\| \leq \langle y_\delta - T x_{\alpha,\delta}, y_\delta - y \rangle \leq \delta \|y_\delta - T x_{\alpha,\delta}\|,
\]

we obtain

\[E(\alpha, y_\delta) - 4\delta/\alpha \|y_\delta - T x_{\alpha,\delta}\| \leq \|x_{\alpha,\delta} - T^t y\|^2 \leq E(\alpha, y_\delta),\]

where

\[E(\alpha, y_\delta) := \|x_{\alpha,\delta}\|^2 - 2/\alpha \langle y_\delta - T x_{\alpha,\delta}, y_\delta \rangle + 2\delta/\alpha \|y_\delta - T x_{\alpha,\delta}\| + \|T^t y\|^2.
\]

Thus,

\[
\|x_{\alpha,\delta} - T^t y\|^2 \leq E(\alpha, y_\delta) \leq \|x_{\alpha,\delta} - T^t y\|^2 + 4\delta/\alpha \|y_\delta - T x_{\alpha,\delta}\|.
\]

Because of $\|(I - Q)y_\delta\| = \|(I - Q)(Qy - y_\delta)\| = \|(I - Q)(y - y_\delta)\| < \delta$ and $\|(\alpha I + TT^*)^{-1}(Qy_\delta - y)\| < \delta/\alpha$, we obtain, together with (2.13),

\[
\|x_{\alpha,\delta} - T^t y\|^2 \leq E(\alpha, y_\delta) \leq \|x_{\alpha,\delta} - T^t y\|^2 + 4\delta \|(\alpha I + TT^*)^{-1}y\| + 8\delta^2/\alpha.
\]

It is well known ([12, Theorem 3.3.2]) that $E(\alpha, y_\delta)$ is a minimum if and only if $\alpha = \alpha(\delta)$. Hence, we may use a similar proof to that of Theorem 2.8 to establish convergence rates for Morozov's discrepancy principle.

Theorem 2.10. For each $\delta > 0$ and $y_\delta \in Y$ satisfying (2.12), let $\alpha(\delta)$ be the unique solution of (1.9). If $T^t y \in R((T^*T)^\nu)$ for some $\nu > 0$, then

\[
\|x_{\alpha(\delta),\delta} - T^t y\| = o(\delta^{2\nu/(2\nu + 1)}) \quad \text{for } \nu < 1/2
\]

and

\[
\|x_{\alpha(\delta),\delta} - T^t y\| = O(\delta^{1/2}) \quad \text{for } \nu \geq 1/2.
\]

Proof. Cf. Appendix 2. \(\square\)
Remark 2.11. The discrepancy principle (1.9) so far described is only applicable if \(y \in R(T) \). However, if \(\alpha(\delta) \) is computed as the unique solution of
\[
\|Tx_{\alpha,\delta} - Qy_\delta\|^2 = \delta^2,
\]
then Theorem 2.10 also holds for \(y \in R(T) + R(T)^\perp = D(T^\perp) \).

3. Finite-Dimensional Approximations of Best Approximate Solutions. Let \(V_1 \subseteq V_2 \subseteq V_3 \subseteq \cdots \) be a sequence of finite-dimensional subspaces of \(X \) with \(\bigcup_{m \in \mathbb{N}} V_m = X \).

For each \(m \in \mathbb{N} \) let
\[
(3.1) \quad T_m := TP_m, \quad \gamma_m := \|T(I - P_m)\|, \quad b_m := \|Q_mT(I - P_m)\|
\]
where \(P_m \) is the orthogonal projector of \(X \) onto \(V_m \) and \(Q_m \) is the orthogonal projector of \(Y \) onto \(R(T_m) \), the range of \(T_m \). For given \(m, n \in \mathbb{N} \), \(\alpha > 0 \) and \(y_\delta \in Y \) we consider approximations \(x_{\alpha,\delta,m} \) given by (1.12), which lie in \(R(T^*) \subseteq V_m \). In this finite-dimensional setting we assume that the available data \(y_\delta \) satisfies, with an a priori given noise level \(\delta \geq 0 \),
\[
(3.2) \quad \|y - y_\delta\|^2 \leq \delta^2 < \|Q_my_\delta\|^2 / C,
\]
where \(C > 1 \). Note that for this finite-dimensional approach also the case \(\delta = 0 \) (i.e., the data are exactly known) is of interest, because it is not always possible to guarantee convergence of \(T^*_m y \to T^* y \) if \(m \to \infty \) (see Seidman [21]).

Our first result shows that \(T^*_m y \) is the best possible approximation of \(T^* y \) by elements of \(V_m \), if \(b_m = 0 \).

Theorem 3.1. If \(b_m = 0 \), then \(T^*_m y = P_mT^* y \).

Proof. By (3.1) we have \(Q_mT = Q_mTP_m = T_m \). Hence \(T^*_m y = T^*_mQ_m Q^* y = T^*_m Q_m TT^* y = T^*_m T^*_m y \). \(T^*_m T_m \) is the orthogonal projector onto \(N(T_m)^\perp \subseteq V_m \), \(P_m \) is the orthogonal projector onto \(V_m \) and \(T^*_m y \in N(T)^\perp \subseteq (N(T) \cap V_m)^\perp = (N(T_m) \cap V_m)^\perp \). Therefore, we have \(T^*_m T^*_m y = P_m T^*_m y \).

For convergence rates in the situation of Theorem 3.1, see Theorem 3.6. From now on we will assume that the number \(b_m \) and the noise level \(\delta \) are not both zero. Then, for \(n, m \in \mathbb{N} \) and \(z \in Y \), we define
\[
(3.3) \quad f^n_m(\alpha, z) := \alpha^{2n+1} \langle (\alpha I + T^*_m T^* - (2n+1)Q_m z, Q_m z) \rangle \quad \text{for } \alpha > 0.
\]

Lemma 3.2. Let \(K > 0 \) and suppose that \(y, y_0 \) satisfy (3.2) for some \(C > 1 \). Further, assume that \(b_m \) and \(\delta \) are not both zero. Then for each \(n \in \mathbb{N} \) the equation
\[
(3.4) \quad (1 - K(2n - 1)b_m^2 / \alpha) f^n_m(\alpha, y_\delta) = C\delta^2
\]
has a unique solution \(\alpha > 0 \).

From now on, we denote the unique solution of (3.4) by \(\alpha_m(\delta) \). We will show that a parameter choice \(\alpha = \alpha_m(\delta) \) yields the convergence rates mentioned in Section 1. For our convergence analysis we may assume without loss of generality that \(\gamma_m > 0 \). For, if \(\gamma_m = 0 \), then \(T = T_m, b_m = 0 \), and so we have the same situation as discussed in Section 2.
Let $x_{a,m}^n$ be the result of (1.12) with y_δ replaced by y. Then, analogously to Lemma 2.6, one can show the following lemma.

Lemma 3.3. Let $\eta > 0$. Then for all $\alpha > 0$ and all $n \in \mathbb{N}$ there holds
\[
\|x_{a,m}^{n,\eta} - T^*_\eta y\|^2 \leq 2/(\min(\eta, 1)) \left(2n\eta\delta^2/\alpha + \|x_{a,m}^{n,\eta} - T^*_\eta y\|^2\right).
\]

To simplify notations, we define for $j \geq 1$ and $\alpha > 0$
\[
z_{\alpha,m}^j := \alpha^{-1}(\alpha I + T_m^*T_m)^{-j}T_m^*y, \quad z_{\alpha}^j := \alpha^{-1}(\alpha I + T^*T)^{-j}T^*y.
\]

Lemma 3.4. For all $\alpha > 0$ and all $n \in \mathbb{N}$ there holds
\[
\|x_{a,m}^{n} - x_{a}^{n}\| \leq \sum_{j=1}^{n} (n - j + 1)(1 + b_m\alpha^{-1/2})\|(I - P_m)z_{\alpha}^j\|.
\]

Proof. Cf. Appendix 2. \square

Lemma 3.5. Let $n \in \mathbb{N}$ be fixed. Then there exists a function g with $\lim_{t \to 0} g(t) = 0$ such that for all $\alpha \geq \gamma_m^2$,
\[
\|x_{a,m}^{n} - x_{a}^{n}\| \leq g(\gamma_m).
\]

If further $T^*_\eta y \in R((T^*T)^\nu)$ for some $\nu > 0$, then
\[
g(\gamma_m) = \begin{cases} o(\gamma_m^{2\nu}) & \text{for } \nu < 1/2, \\
o(\gamma_m) & \text{for } \nu \geq 1/2. \end{cases}
\]

Proof. Cf. Appendix 2. \square

The next result gives a convergence rate in terms of γ_m for the best possible approximation of $T^*_\eta y$ by elements of V_m.

Theorem 3.6. If $T^*_\eta y \in R((T^*T)^\nu)$ for some $\nu > 0$, then
\[
\|(I - P_m)T^*_\eta y\| = \begin{cases} o(\gamma_m^{2\nu}) & \text{for } \nu < 1/2, \\
o(\gamma_m) & \text{for } \nu \geq 1/2. \end{cases}
\]

Proof. Since
\[
\|(I - P_m)T^*_\eta y\| \leq \|x_{a,m}^{1} - T^*_\eta y\|
\]
(3.5)
\[
\leq \|x_{a,m}^{1} - x_{a}^{1}\| + \|x_{a}^{1} - T^*_\eta y\| \quad \text{for all } \alpha > 0
\]
and
\[
\|x_{a}^{1} - T^*_\eta y\| = \begin{cases} o(\alpha^\nu) & \text{for } \nu < 1, \\
o(\alpha) & \text{for } \nu \geq 1 \end{cases}
\]
(see [19]), the result follows from Lemma 3.5, if we choose $\alpha = \gamma_m^{2\nu}$ in (3.5). \square

In order to present the main convergence theorem, we need the following lemmas.

Lemma 3.7. For each $K > 0$ and each $\alpha > 0$, $n \in \mathbb{N}$, there holds
\[
\|x_{a,m}^{n} - T^*_\eta y\|^2 \leq \|x_{a,m}^{n} - T_m^* y\|^2 + Kb_m^2 \sum_{j=1}^{2n-1} j\rho_{j,m}(\alpha) + (1/K)\|(I - P_m)T^*_\eta y\|^2
\]
+ $T_m^* y - T^*_\eta y\|^2 - 2\langle T_m^* y, T_m^* y - T^*_\eta y\rangle$
\[
\leq \|x_{a,m}^{n} - T^*_\eta y\|^2 + 2Kb_m^2 \sum_{j=1}^{2n-1} j\rho_{j,m}(\alpha) + (2/K)\|(I - P_m)T^*_\eta y\|^2,
\]
where $\rho_{j,m}(\alpha) := \alpha^{-1}(\alpha I + T_m^* T_m)^{(j+1)}Q_m y, Q_m y$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Lemma 3.8. Let \(n \in \mathbb{N} \) be fixed. Then there exists a function \(h \) with \(\lim_{t \to 0} h(t) = 0 \) such that for all \(\alpha \geq \gamma_m^2 \),
\[
\ell_{m}^{2n-1} \sum_{j=1}^{m} j \rho_{j,m}(\alpha) \leq h(\gamma_m^2).
\]
If further \(T^\dagger y \in R((T^*T)^\nu) \) for some \(\nu > 0 \), then
\[
h(\gamma_m^2) = \begin{cases}
O(\gamma_m^2) & \text{for } \nu > 1/2, \\
o(\gamma_m^2) & \text{for } \nu < 1/2.
\end{cases}
\]

The proof of the following lemma is analogous to that of Lemma 2.5 and is omitted.

Lemma 3.9. Let \(K > 0, C > 1, C_1 := (C^{1/2} - 1)^2, C_2 := (C^{1/2} + 1)^2 \). Then for each \(\delta \geq 0, y, y_\delta \in Y \) satisfying (3.2), and for each \(n \in \mathbb{N} \), we have
\[
C_1 \delta^2 \leq (1 - K(2n - 1)b_m^2/\alpha_m(\delta)) f_n^m(\alpha_m(\delta), y) \leq C_2 \delta^2,
\]
where \(\alpha_m(\delta) \) is given by (3.4).

Using Lemma 3.9 and the next lemma, we will see that our parameter choice (3.4) gives the minimum of an upper bound for the squared error \(\|x_m^{a_m(\delta), \delta} - T^\dagger y\|^2 \).

Lemma 3.10. Let \(\eta > 0, \delta \geq 0, K > 0, n \in \mathbb{N} \), and assume that \(b_m \) and \(\delta \) are not both zero. Then \(\tilde{\alpha} \) is a minimizer for the one-dimensional optimization problem
\[
\text{minimize } 2n\eta \delta^2/\alpha + \|x_m^{a_m, \delta} - T^\dagger y\|^2 + Kb_m^{2n-1} \sum_{j=1}^{m} j \rho_{j,m}(\alpha)
\]
\[
+ (1/K)\|(I - P_m)T^\dagger y\|^2 - 2\langle T^\dagger y, T_m^\dagger y - T^\dagger y \rangle + \|T_m^\dagger y - T^\dagger y\|^2
\]
subject to \(\alpha > 0 \) if and only if
\[
(1 - K(2n - 1)b_m^2/\tilde{\alpha}) f_n^m(\tilde{\alpha}, y) = \eta \delta^2.
\]

Theorem 3.11. Let \(C > 1, n \in \mathbb{N}, K > 0 \) be fixed. For each \(\delta \geq 0, y_\delta \in Y \) satisfying (3.2), and for each \(V_m \subset X \) such that \(b_m \) and \(\delta \) are not both zero, let \(x_m^{a_m(\delta), \delta} \) be given by (1.12), where \(\alpha_m(\delta) \) is the unique positive solution of (3.4). Then
\[
\lim_{\delta \to 0, m \to \infty} x_m^{a_m(\delta), \delta} = T^\dagger y.
\]
If further \(T^\dagger y \) is an element of \(R((T^*T)^\nu) \) for some \(\nu > 0 \), then
\[
\|x_m^{a_m(\delta), \delta} - T^\dagger y\| = \begin{cases}
o(\delta^{2\nu/(2\nu + 1)}) + o(\gamma_m^2) & \text{for } \nu < 1/2, \\
o(\delta^{2\nu/(2\nu + 1)}) + O(\gamma_m) & \text{for } 1/2 \leq \nu < n, \\
O(\delta^{2n/(2n + 1)}) + O(\gamma_m) & \text{for } \nu \geq n.
\end{cases}
\]

Proof. It follows from Lemma 3.9 that there exists a number \(\eta, C_1 \leq \eta \leq C_2 \), such that
\[
(1 - K(2n - 1)b_m^2/\alpha_m(\delta)) f_n^m(\alpha_m(\delta), y) = \eta \delta^2.
\]
Hence we obtain by Lemma 3.2, Lemma 3.7 and Lemma 3.10 that
\[
\left\|x_{a_m(\delta),\delta,m}^n - T^*y\right\|^2 \leq 2/\min\{\eta, 1\} \left(2n\eta\delta^2/\alpha_m(\delta) + \left\|x_{a_m(\delta),m}^n - T^*y\right\|^2\right)
\]
\[
\leq 2/\min\{\eta, 1\} \min\left\{2n\eta\delta^2/\alpha + \left\|x_{a_m}^n - T^*y\right\|^2 + Kb_m^{2n-1} \sum_{j=1}^{2n-1} j\rho_{j,m}(\alpha) + 1/K\|(I - P_m)T^*y\|^2 - 2\left(T_m^*y, T_m^*y - T^*y\right) + \left\|T_m^*y - T^*y\right\|^2: \alpha > 0\right\}
\]
\[
\leq 2/\min\{C_1, 1\} \inf\left\{2nC_2\delta^2/\beta_{m,n}(\delta) + \left\|x_{\beta_{m,n}(\delta),m}^n - T^*y\right\|^2 + 2Kb_m^{2n-1} \sum_{j=1}^{2n-1} j\rho_{j,m}(\beta_{m,n}(\delta)) + 2/K\|(I - P_m)T^*y\|^2: \alpha > 0\right\}
\]
\[
\leq 2/\min\{C_1, 1\} \left(2nC_2\delta^2/\beta_{m,n}(\delta) + \left\|x_{\beta_{m,n}(\delta),m}^n - T^*y\right\|^2 + 2Kb_m^{2n-1} \sum_{j=1}^{2n-1} j\rho_{j,m}(\beta_{m,n}(\delta)) + 2/K\|(I - P_m)T^*y\|^2\right),
\]
where \(\beta_{m,n}(\delta) := \max\{\beta_n(\delta), \gamma_m^2\}\), with \(\beta_n(\delta)\) given by (2.9). Since
\[
\left\|x_{\beta_{m,n}(\delta),m}^n - T^*y\right\|^2 \leq \left(\left\|x_{\beta_{m,n}(\delta),m}^n - x_{\beta_{m,n}(\delta)}^n\right\| + \left\|x_{\beta_{m,n}(\delta)}^n - T^*y\right\|\right)^2
\]
\[
\leq 2\left[\left\|x_{\beta_{m,n}(\delta),m}^n - x_{\beta_{m,n}(\delta)}^n\right\|^2 + \varphi_n(\beta_{m,n}(\delta))\right]
\]
and \(\beta_{m,n}(\delta) \geq \gamma_m^2\), we obtain by Lemma 3.5 and Lemma 3.8,
\[
\left\|x_{a_m(\delta),\delta,m}^n - T^*y\right\|^2
\]
\[
\leq 2/\min\{C_1, 1\} \left(2nC_2\delta^2/\beta_{m,n}(\delta) + 2\varphi_n(\beta_{m,n}(\delta)) + 2g^2(\gamma_m) + 2Kh(\gamma_m) + 2/K\|(I - P_m)T^*y\|^2\right).
\]
By the proof of Theorem 2.8 we have \(\lim_{\delta \to 0}\beta_n(\delta) = 0\) and \(\lim_{\delta \to 0}\beta_{m,n}(\delta) = 0\) because of \(\beta_{m,n}(\delta) \geq \beta_n(\delta)\).
Further, our assumptions on \(V_m\) imply \(\lim_{m \to \infty}\|(I - P_m)T^*y\| = 0\) and \(\lim_{m \to \infty}\gamma_m = 0\) (see, e.g., [12, Lemma 2.4.1]). This implies \(\lim_{m \to \infty, \delta \to 0}\beta_{m,n}(\delta) = 0\) and hence \(\lim_{m \to \infty, \delta \to 0}\varphi_n(\beta_{m,n}(\delta)) = 0\) by Lemma 2.1. Hence, all expressions on the right-hand side of (3.6) tend to zero, which proves convergence for our parameter choice.
Now assume $T^* T \in R((T^* T)^*)$ for some $\nu > 0$. By Lemma 3.5, Theorem 3.6 and Lemma 3.8 we obtain

\begin{equation}
2g^2(\gamma_m) + 2Kh(\gamma_m) + (2/K)\|I - P_mT^* T\|_2^2 = \begin{cases} o(\gamma_m^{4\nu}) & \text{for } \nu < 1/2, \\ O(\gamma_m^2) & \text{for } \nu \geq 1/2. \end{cases}
\end{equation}

Since $\beta_n(\delta) \leq \beta_{m,n}(\delta)$, we obtain by the proof of Theorem 2.8,

\begin{equation}
2n\delta^2/\beta_{m,n}(\delta) \leq \varphi_n(\beta_n(\delta)) = \begin{cases} o(\delta^{4\nu/(2\nu + 1)}) & \text{for } \nu < n, \\ O(\delta^{4n/(2n + 1)}) & \text{for } \nu \geq n. \end{cases}
\end{equation}

Further, the results of Schock [19] imply that

\begin{equation}
\varphi_n(\gamma_m^2) = \begin{cases} o(\gamma_m^2) & \text{for } \nu < n, \\ O(\gamma_m^{4\nu}) & \text{for } \nu \geq n. \end{cases}
\end{equation}

Hence, by (3.6), (3.7), (3.8) and (3.9) we obtain

\begin{equation}
\|x^n_{a_m(\delta),\delta,m} - T^* y\|_2^2 = \begin{cases} o(\delta^{4\nu/(2\nu + 1)}) + o(\gamma_m^{4\nu}) & \text{for } 0 < \nu < 1/2, \\ o(\delta^{4\nu/(2\nu + 1)}) + O(\gamma_m^2) & \text{for } 1/2 < \nu < n, \\ O(\delta^{4n/(2n + 1)}) + O(\gamma_m^2) & \text{for } \nu \geq n, \end{cases}
\end{equation}

which completes our proof. □

Remark 3.12. Although convergence rates are expressed in terms of γ_m, only the numbers b_m are used for the computation of $\alpha_m(\delta)$. Note that the numbers b_m are effectively computable (cf. Appendix 3), whereas only estimates for γ_m are available in general. Groetsch [12], resp. Engl and Neubauer [6], use information about γ_m to compute the regularization parameter. This might be detrimental for actual computations, since poor estimates for γ_m could also yield poor convergence rates.

Remark 3.13. For actual computations the choice of K, C and n is of course important. In view of the proof of Lemma 3.7, it seems to be advantageous to choose K small, if one has the a priori information that $T^* y$ may be approximated well by elements of V_m, i.e., $\|(I - P_m)T^* y\|_2$ is small. More critical is the choice of C and n. In the infinite-dimensional case, a choice of $C = 1$ is optimal by Remark 2.4, and the approximation error remains uniformly bounded for all n by Theorem 2.9. Our numerical experience suggests that analogous results could also be expected for our finite-dimensional approximations, but we were not able to prove this.

4. Numerical Results. All examples are Fredholm integral equations of the first kind on $[0,1]$,

$$\int_0^1 k(t,s) x(s) ds = y(t),$$

where the kernel is given by

$$k(t,s) := \begin{cases} t(1-s) & \text{if } t \leq s, \\ s(1-t) & \text{if } t > s. \end{cases}$$

This kernel is the Green's function of the vibrating string with fixed ends. It is well known (cf. [2]) that (u_j, v_j, σ_j) with $u_j(t) = v_j(t) = 2^j(\pi/2) \sin(j\pi t)$, $t \in [0,1]$, and $\sigma_j = (\pi j)^{-2}$ forms a singular system for this operator.
In our examples, we chose V_m as a space of linear splines on a uniform grid of $(m + 1)$ points in $[0, 1]$. For some computational aspects we refer to Appendix 3 in the Supplements section. We obtained the following results for b_m:

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_m</td>
<td>0.548×10^{-2}</td>
<td>0.131×10^{-2}</td>
<td>0.325×10^{-3}</td>
<td>0.811×10^{-4}</td>
</tr>
</tbody>
</table>

It appears that $b_m = O(m^{-2})$, which agrees with the fact that $\gamma_m = O(m^{-2})$ (cf. [9]).

Example 4.1. (a) $y(t) = (t - t^3)/6$, $T^t y(s) = s$. Since $\int_0^1 s \sin(\pi s) ds = (-1)^{i+1}/j\pi$, we obtain that $T^t y \in R((T^t T)^*)$ for $v < 1/8$. (Note that $T^t y \in R((T^t T)^*)$ if and only if $\sum a_j^2 (T^t y, u_j)^2 < \infty$.) Hence, according to theory, we should obtain a convergence rate $o(\gamma_m^2)$ for $v < 1/8$, independent of the iteration number n. For $K = 1$, the results were as follows:

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 10$</th>
<th>$n = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_m</td>
<td>$e_m b_m^{-1/4}$</td>
<td>e_m</td>
<td>$e_m b_m^{-1/4}$</td>
</tr>
<tr>
<td>4</td>
<td>0.167</td>
<td>0.614</td>
<td>0.153</td>
</tr>
<tr>
<td>8</td>
<td>0.114</td>
<td>0.600</td>
<td>0.104</td>
</tr>
<tr>
<td>16</td>
<td>0.806 $\times 10^{-1}$</td>
<td>0.600</td>
<td>0.731 $\times 10^{-1}$</td>
</tr>
<tr>
<td>32</td>
<td>0.570 $\times 10^{-1}$</td>
<td>0.600</td>
<td>0.517 $\times 10^{-1}$</td>
</tr>
</tbody>
</table>

Here, $e_m := ||x_{a_{m,n}}^n - T^t y||$ with $a_m := (2n - 1)Kb_m^2$. The columns headed by $e_m b_m^{-1/4}$ show that the convergence seems to be $O(b_m^{-1/4})$.

Since $T^t y \in V_m$ for each m, we should obtain better results for small K, according to Remark 3.13. The following table shows that for $K = 0.05$ the absolute errors are significantly smaller. However, the convergence rates seem to be as before.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 10$</th>
<th>$n = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-1} e_m$</td>
<td>$10^{-1} e_m b_m^{-1/4}$</td>
<td>$10^{-1} e_m$</td>
<td>$10^{-1} e_m b_m^{-1/4}$</td>
</tr>
<tr>
<td>4</td>
<td>0.252 $\times 10^{-1}$</td>
<td>0.926</td>
<td>0.947 $\times 10^{-3}$</td>
</tr>
<tr>
<td>8</td>
<td>0.159 $\times 10^{-1}$</td>
<td>0.836</td>
<td>0.221 $\times 10^{-3}$</td>
</tr>
<tr>
<td>16</td>
<td>0.111 $\times 10^{-1}$</td>
<td>0.830</td>
<td>0.145 $\times 10^{-3}$</td>
</tr>
<tr>
<td>32</td>
<td>0.784 $\times 10^{-2}$</td>
<td>0.826</td>
<td>0.102 $\times 10^{-2}$</td>
</tr>
</tbody>
</table>

(b) y as in (a); for each m, y was 30 times randomly perturbed with $\delta_m = b_m/2$. Choosing the regularization parameter as the solution of (3.4), the convergence rate should be $o(b_m^\mu)$ with $\mu < 0.2$. The following results were computed with $C = 1.01$ and $K = 0.01$.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 10$</th>
<th>$n = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{e}_m</td>
<td>$\bar{e}_m b_m^{-0.2}$</td>
<td>\bar{e}_m</td>
<td>$\bar{e}_m b_m^{-0.2}$</td>
</tr>
<tr>
<td>4</td>
<td>0.336</td>
<td>0.952</td>
<td>0.338</td>
</tr>
<tr>
<td>8</td>
<td>0.242</td>
<td>0.913</td>
<td>0.235</td>
</tr>
<tr>
<td>16</td>
<td>0.176</td>
<td>0.877</td>
<td>0.175</td>
</tr>
<tr>
<td>32</td>
<td>0.131</td>
<td>0.862</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Here and below, \bar{e}_m denotes the maximum error of all tests.
Example 4.2. (a) $y(t) = (1/24)(t - 2t^3 + t^4)$, $T^+y(s) = (1/2)(s - s^2)$. Since
\[\int_0^1 T^+y(s) \sin(\pi s) ds = (-1)^{1/2}/(\pi)^3, \]
we obtain $T^+y \in R((T^+T)^*)$ for $\nu < 5/8$. Hence the convergence rate should be $O(\gamma_m)$. For $K = 1$, we obtain the following results:

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$m = 2$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e_m</td>
<td>$e_m b_m^{-1}$</td>
<td>e_m</td>
</tr>
<tr>
<td>4</td>
<td>0.250×10^{-2}</td>
<td>0.456</td>
<td>0.242×10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>0.601×10^{-3}</td>
<td>0.458</td>
<td>0.594×10^{-3}</td>
</tr>
<tr>
<td>16</td>
<td>0.149×10^{-3}</td>
<td>0.455</td>
<td>0.147×10^{-3}</td>
</tr>
<tr>
<td>32</td>
<td>0.367×10^{-4}</td>
<td>0.453</td>
<td>0.366×10^{-4}</td>
</tr>
</tbody>
</table>

The following table gives the errors for the best possible approximation of T^+y by elements of V_m.

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>$| (I - P_m)T^+y |$</td>
<td>0.233×10^{-2}</td>
<td>0.582×10^{-3}</td>
<td>0.146×10^{-3}</td>
<td>0.364×10^{-4}</td>
</tr>
</tbody>
</table>

(b) y as in (a); y was 30 times randomly perturbed with $\delta_m := b_m$ for each m. According to theory, the convergence rate should be $o(b_m^\mu)$ with $\mu < 5/9$.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{e}_m</td>
<td>$\tilde{e}_m b_m^{-5/9}$</td>
<td>\tilde{e}_m</td>
</tr>
<tr>
<td>4</td>
<td>0.770×10^{-1}</td>
<td>1.39</td>
<td>0.746×10^{-1}</td>
</tr>
<tr>
<td>8</td>
<td>0.272×10^{-1}</td>
<td>1.09</td>
<td>0.224×10^{-1}</td>
</tr>
<tr>
<td>16</td>
<td>0.971×10^{-2}</td>
<td>0.842</td>
<td>0.728×10^{-2}</td>
</tr>
<tr>
<td>32</td>
<td>0.451×10^{-2}</td>
<td>0.845</td>
<td>0.372×10^{-2}</td>
</tr>
</tbody>
</table>

Example 4.3. (a) $y(t) = (1/30)(3t - 5t^3 + 3t^5 - t^6)$, $T^+y(s) = s - 2s^3 + s^4$. In this example one has $T^+y \in R((T^+T)^*)$ for $\nu < 9/8$. Hence, the convergence rate should again be $O(\gamma_m)$. If we choose $K = 1$, we obtain the following results:

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e_m</td>
<td>$e_m b_m^{-1}$</td>
<td>e_m</td>
</tr>
<tr>
<td>4</td>
<td>0.536×10^{-2}</td>
<td>0.978</td>
<td>0.531×10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>0.129×10^{-2}</td>
<td>0.985</td>
<td>0.129×10^{-2}</td>
</tr>
<tr>
<td>16</td>
<td>0.320×10^{-3}</td>
<td>0.985</td>
<td>0.320×10^{-3}</td>
</tr>
<tr>
<td>32</td>
<td>0.798×10^{-4}</td>
<td>0.984</td>
<td>0.798×10^{-4}</td>
</tr>
</tbody>
</table>

Note that our parameter choice yields nearly the best possible approximation $P_m T^+y$:

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>$| (I - P_m)T^+y |$</td>
<td>0.531×10^{-2}</td>
<td>0.129×10^{-2}</td>
<td>0.320×10^{-3}</td>
<td>0.798×10^{-4}</td>
</tr>
</tbody>
</table>
(b) \(y \) as in (a); \(y \) was again 30 times randomly perturbed with \(\delta_m := b_m \) for each \(m \). In this case we should obtain, for \(n = 1 \), convergence rate \(O(b_m^{\mu}) \) with \(\mu = 2/3 \), resp., for \(n \geq 2 \), the convergence rate \(o(b_m^{\mu}) \) with \(\mu < 9/13 \). A choice \(C = 1.01, K = 1 \) yields:

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tilde{e}_m)</td>
<td>(\tilde{e}_m b_m^{-2/3})</td>
<td>(\tilde{e}_m)</td>
</tr>
<tr>
<td>4</td>
<td>0.124</td>
<td>3.99</td>
<td>0.112</td>
</tr>
<tr>
<td>8</td>
<td>0.353 \times 10^{-1}</td>
<td>2.95</td>
<td>0.249 \times 10^{-1}</td>
</tr>
<tr>
<td>16</td>
<td>0.116 \times 10^{-1}</td>
<td>2.45</td>
<td>0.662 \times 10^{-2}</td>
</tr>
<tr>
<td>32</td>
<td>0.467 \times 10^{-2}</td>
<td>2.49</td>
<td>0.236 \times 10^{-2}</td>
</tr>
</tbody>
</table>

Example 4.4. \(y(t) = \frac{1}{(\pi t)^2} \sin(\pi t) \), \(T^* y(s) = \sin \pi s \). In this example, \(T^* y \in R((T^* T)^{**}) \) holds for any \(\nu > 0 \). If the data are known exactly, we again obtain nearly the best possible approximation \(P_m T^* y \). If the data are randomly perturbed with \(\delta_m = b_m \), we should obtain, for each \(n \in \mathbb{N} \), the convergence rate \(O(b_m^{2n/(2n+1)}) \).

The test was performed 30 times again; the following table shows the maximum error observed for the choice \(C = 1.01, K = 1 \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tilde{e}_m)</td>
<td>(\tilde{e}_m b_m^{-2/3})</td>
<td>(\tilde{e}_m)</td>
</tr>
<tr>
<td>4</td>
<td>0.170</td>
<td>5.47</td>
<td>0.135</td>
</tr>
<tr>
<td>8</td>
<td>0.540 \times 10^{-1}</td>
<td>4.51</td>
<td>0.336 \times 10^{-1}</td>
</tr>
<tr>
<td>16</td>
<td>0.178 \times 10^{-1}</td>
<td>3.77</td>
<td>0.875 \times 10^{-2}</td>
</tr>
<tr>
<td>32</td>
<td>0.693 \times 10^{-2}</td>
<td>3.71</td>
<td>0.292 \times 10^{-2}</td>
</tr>
</tbody>
</table>

Johannes-Kepler-Universität
A-4040 Linz, Austria

Supplement to
An A Posteriori Parameter Choice for Ordinary and Iterated Tikhonov Regularization of Ill-Posed Problems Leading to Optimal Convergence Rates

By Helmut Gfrerer

APPENDIX 1. SINGULAR SYSTEMS

Some of the proofs in Appendix 2 are based on the use of a singular system \((\sigma_j, u_j, v_j)\) for the compact operator \(T\) (cf. [8], [12]). We now give a brief summary of the most important preliminaries used in Appendix 2.

From spectral theory we know that the nonzero eigenvalues of \(T^*T\) can be enumerated as a sequence \(\sigma_1^2 \geq \sigma_2^2 \geq \ldots\) which (if infinite) converges to zero. If we denote by \(u_1, u_2, \ldots\) an associated sequence of orthonormal eigenvectors and set \(v_j = T u_j / \sigma_j\), then \(T^* v_j = \sigma_j u_j\). Moreover, \((u_p)\) is a complete orthonormal set for \(R(T) = N(T^*)\), and \((v_p)\) is a complete orthonormal set for \(R(T^*) = N(T)\). In order that \(y \in D(T^*)\), it is necessary and sufficient that \(\sum_j \sigma_j^2 \langle y, v_j \rangle^2 < \infty\). Then

\[T^* y = \sum_j \sigma_j^2 \langle y, v_j \rangle u_j. \]

Further, \(T^* y \in R((T^*T)^{\gamma})\) if and only if \(\sum_j \sigma_j^2 \langle y, v_j \rangle^2 < \infty\).

For any \(\alpha, \lambda > 0\) we have for each \(z \in Y\)

\[(\alpha I + T^*T)^{-\lambda} z = \sum_j \left(\alpha + \sigma_j^2 \right)^{-\lambda} \langle z, v_j \rangle v_j + \alpha^{-\lambda}(1-Q)z, \]

where \(Q\) denotes the orthogonal projector onto \(R(T)\). Hence

\[\| (\alpha I + T^*T)^{-\lambda} z \|^2 = \sum_j \left(\alpha + \sigma_j^2 \right)^{-2\lambda} \langle z, v_j \rangle^2 + \| (1-Q)z \|^2 \leq \sum_j \langle z, v_j \rangle^2 + \| (1-Q)z \|^2 = |z|^2, \]

and this implies \(\| (\alpha I + T^*T)^{-\lambda} \| \leq 1\).

Analogously, we have for each \(x \in X\)

\[(\alpha I + T^*T)^{-\lambda} x = \sum_j \left(\alpha + \sigma_j^2 \right)^{-\lambda} \langle x, u_j \rangle u_j + \alpha^{-\lambda}(1-P)x, \]

\(\odot 1987\ American\ Mathematical\ Society\)

0025-5718/87 $1.00 + .25 per page
where \(P \) is the orthogonal projector onto \(\overline{R(I^T)} \). Hence, our approximations given by (1.3) may be written as

\[
x_{a,b} = (aI^T y)^{-1} y = \sum_j (a+b)^{-1} y_j y_j^T u_j.
\]

We now formulate a lemma which will be useful in the sequel.

Lemma A.1. Let \(\sum_{j=1}^{\infty} b_j < \infty \) and \((q_j(a)) \) be a sequence of continuous functions on \([0,\infty)\), uniformly bounded in \(j \) and \(a \). Further, let \(q_j(0) = 0 \) for each \(j \). Then the series \(\sum_{j=1}^{\infty} q_j b_j \) converges uniformly to a continuous function \(G \) on \([0,\infty)\) with \(\lim_{a \to 0} G(a) = G(0) = 0 \).

The proof is straightforward and is omitted.

APPENDIX 2. PROOFS.

Proof of Lemma 2.1. If \((a_j, u_j, v_j)\) denotes a singular system, we obtain

\[
f_n(a, z) = \sum_{j=1}^{n} a^{2n+1} (a+b)_{j}^{-2} (2n+1) c_j v_j^2.
\]

Then, by Lemma A.1, \(f_n(a, z) \) is continuous and \(\lim_{a \to 0} f_n(a, z) = 0 \). Since \(a^{2n+1} (a+b)_{j}^{-2} (2n+1) \) is strictly increasing for each \(j \) and \(\|f_n\|^2 = \sum_j c_j v_j^2 > 0 \), we obtain that \(f_n(a, z) \) is strictly increasing.

Since the sequence \((a_j^2) \) is decreasing, we have

\[
0 \leq \|Q^T f_n(a, z)\|^2 = \sum_j (1-a^{2n+1} (a+b)_{j}^{-2} (2n+1)) c_j v_j^2
\]

\[
\leq (1-a^{2n+1} (a+b)_{j}^{-2} (2n+1)) \sum_j c_j v_j^2 > 0 \quad \text{for} \quad a = a_0.
\]

Thus, \(\lim_{a \to a_0} f_n(a, z) = \|Q^T\|^2 \).

It follows immediately from (1.7) that

\[
x_n = \sum_{k=1}^{n} a^{k-1} (a+b)_j^{-2} y_j y_j^T u_j = \sum_{k=1}^{n} a^{k-1} (a+b)_j^{-2} y_j y_j^T u_j
\]

\[
= \sum_{j=1}^{\infty} (1-a^n (a+b)_j^{-2} v_j^2) y_j y_j^T u_j.
\]

Hence, we obtain \(f_n(a, z) = \sum_{j=1}^{\infty} a^n (a+b)_j^{-2} v_j^2 y_j y_j^T u_j \) and

\[
\|f_n\|^2 = \sum_{j=1}^{\infty} a^n (a+b)_j^{-2} v_j^2 y_j^2.
\]

It follows, analogously as above, that \(\omega_n \) is strictly increasing, continuous and

\[
\lim_{a \to 0} \omega_n(a) = 0, \lim_{a \to a_0} \omega_n(a) = \sum_{j=1}^{\infty} a^n (a+b)_j^{-2} c_j v_j^2 = \|Q^T\|^2.
\]

Further, we obtain by standard arguments that \(\omega_n \) is continuously differentiable and

\[
\omega_n'(a) = 2n a^{2n-1} (a+b)_j^{-2} (2n+1) c_j v_j^2 = 2n a^{2n} f_n(a, y).
\]
Proof of Lemma 2.5. For $\alpha > 0$ we define the linear operator

$$
\varphi_0^n = a(2n+1)/2(\alpha + \alpha I)^n T^n (2n+1)/2. \quad \text{Since} \quad |\varphi_0^n| \leq |a(2n+1)/2(\alpha + \alpha I)^n T^n (2n+1)/2| \leq 1,
$$

we obtain

$$
|\varphi_0^n(s)y| \leq |\varphi_0^n(s)y' + |\varphi_0^n(s)y'y| \leq c^{1/2} s + \delta
$$

and

$$
|\varphi_0^n(s)y| \leq |\varphi_0^n(s)y' - |\varphi_0^n(s)y'y| \leq c^{1/2} s - \delta.
$$

Since $f_1(a(s), y) = |\varphi_0^n(s)y|^2$, our assertion follows immediately. \hfill \Box

Proof of Lemma 2.6. Since $|t^n a^{-k} (\alpha + \alpha I)^{-k}| = |1 - a^{-k} (\alpha + \alpha I)^{-k}| \leq 1$ and

$$
|t^n a^{-k} (\alpha + \alpha I)^{-k}| \leq n/\alpha \text{ hold for all } \alpha > 0, \ t \geq 0, \text{ we obtain from (12, Lemma 2.3.2) that}
$$

$$
|\varphi_0^n(s)T^s y| \leq |\varphi_0^n(s)T^s y| + \delta(n/\alpha)^{1/2}.
$$

There follows

$$
\varphi_0^n(s)(a) \leq (|\varphi_0^n(s)T^s y| + \delta(n/\alpha)^{1/2})^2 \leq \frac{2n^2}{\alpha} + \varphi_0^n(s)
$$

$$
\leq \frac{2n}{\alpha} + \varphi_0^n(s). \quad \Box
$$

Proof of Lemma 2.7. Denote $g(a) = 2n \delta^2/a + \varphi_0(a)$. A minimizer \hat{a} of (2.7) has to satisfy the first-order necessary condition $d_{\alpha} g(\hat{a}) = 0$. Using Lemma 2.1, this is equivalent to $(-\gamma^2 + f_1(\hat{a}, y))2n/\alpha^2 = 0$.

Now suppose that $f_1(\hat{a}, y) = \gamma^2$ for some $\hat{a} > 0$. Using the monotonicity of $f_1(\cdot, y)$ we have $d_{\alpha} g(a) = (-\gamma^2 + f_1(\hat{a}, y))2n/\alpha^2 > 0$ for $\hat{a} > \hat{a}$ and $d_{\alpha} g(a) < 0$ for $0 < a < \hat{a}$. Thus \hat{a} is a minimizer for (2.7). \hfill \Box

Proof of Theorem 2.9. The first part follows immediately from (2.10) and (2.9). To prove the second part, we will show that $\varphi_n(m) \leq \varphi_m(m)$ for $m < n$ and all $\alpha > 0$.

Using a singular system $(\alpha_j; u_j; y_j)$ for T, we have for all $n \in \mathbb{N}$

$$
(\alpha_1) \quad \varphi_n(a) = \sum_j a^{2n}(\alpha_j a_j)^2(a_j)^2 < y_j v_j^2.
$$

Let $g_j(v) = (a_1 a_2 \cdots a_j)^{2n}$ for $v > 0$. Since

$$
\varphi_j(v) = 2[a_1 a_2 \cdots a_j] v_j (a_j)^2 + 2 n (a_j)^2 = -[1-x+lnx] \leq 0 \quad \text{for all}
$$

$$
x > 0, \text{ we obtain } g_j(v) \leq 0. \text{ Thus, } g_j(n) < g_j(m) \text{ for } m < n. \text{ Thus it follows from (A.1) that}
$$

$$
\varphi_m(n) = \sum_j g_j(n) a_j^2 < y_j v_j^2 \leq \sum_j g_j(m) a_j^2 < y_j v_j^2 = \varphi_m(m).
$$

Together with (2.8), there follows

$$
2m^2 = \varphi_m(\alpha_m) \varphi_m(\alpha_m) = \varphi_m(\alpha_m \alpha_m) \varphi_m(\alpha_m < m/n \leq \varphi_m(\alpha_m < m/n < \alpha_m < m/n).
$$

Since the function $\varphi_m(\alpha)$ is increasing, we obtain $\alpha_m < m/n < \alpha_m < m/n$. Hence, $\varphi_m(\alpha_m) = 2m^2 \varphi_m(\alpha_m) + 2n^2 \delta^2 \alpha_m = \varphi_m(\alpha_m)$.

Proof of Theorem 2.10. Let $(\alpha_j; u_j; y_j)$ be a singular system for T and define

$$
(\alpha_2) \quad a(a) = \sum_j a(a_j a_j)^2 < a_j^2 < y_j v_j^2.
$$
Since \(v_1(\alpha) = \sum_j \alpha_j^2 (a_0 + \alpha_j)^2 \), we have \(v_1(\alpha) \leq \psi(\alpha) \). Further,

\[
(\mathbf{A.3}) \quad \| (I^{n+1T})_1 \psi \|^2 = \sum_j (a_0 + \alpha_j)^2 (a_0 + \alpha_j + \alpha_j^2) \leq \alpha^{-1} \sum_j a_0 (a_0 + \alpha_j)^2 \leq \alpha^{-1} \psi(\alpha).
\]

Because of \(6a^{-1/2} \psi(\alpha)/2 \leq (\sum_i c_{ij} \psi(\alpha)/2) \) we obtain by (2.14) and Lemma 2.6

\[
(\mathbf{A.4}) \quad \| X_{\alpha, \delta} \|^2 \leq E(\alpha, \delta) = 2(2\delta^2 + a_0^2(\alpha)) + 4a^{-1/2} \psi(\alpha) + 8\delta^2/\alpha
\]

\[
\leq 4\alpha + 16\delta^2/\alpha.
\]

Now suppose that \(T^\nu \in \mathcal{R}(I^{n+1T}) \). Since this holds if and only if

\[
\sum_j (2a_0 + \alpha_j)^2 (a_0 + \alpha_j) < \infty,
\]

we obtain

\[
(\mathbf{A.5}) \quad \psi(\alpha) \leq \sum_j (a_0 + \alpha_j)^2 \leq 0(\alpha) \quad \text{for } \nu \geq 1/2,
\]

and by Lemma A.1,

\[
(\mathbf{A.6}) \quad \psi(\alpha) \leq 2\nu \sum_j (a_0 + \alpha_j)^2 (a_0 + \alpha_j + \alpha_j^2) \leq 2\nu \sum_j (a_0 + \alpha_j)^2 \leq 0(\alpha) \quad \text{for } \nu < 1/2.
\]

It can easily be shown that for each \(\delta > 0 \) the equation

\[
\psi(\alpha) = \delta^2/\alpha
\]

has a unique solution \(\alpha = \delta(\alpha) \).

Since \(\alpha(\delta) \) minimizes \(E(\alpha, \delta) \), we obtain from (A.4)

\[
I^*_{\alpha(\delta)} \delta^{-1} \psi^2 \leq E(\alpha(\delta), \delta) = \min(\psi(\alpha, \delta) : \alpha > 0) \leq \inf(4\psi(\delta/a)) + \delta^2/\alpha \leq 0(\delta(\delta)) + 16\delta^2/\alpha.
\]

Using (A.5) and (A.6), one can show, analogously to the proof of Theorem 2.8, that \(\delta^2/\alpha(\delta) = \psi(\delta(\delta)) = 0(\delta) \) for \(\nu \geq 1/2 \) and \(\delta^2/\alpha(\delta) = \psi(\delta(\delta)) = 0(\delta^2/(2\nu+1)) \) for \(\nu < 1/2 \).

Proof of Lemma 3.2. Analogously to the proof of Lemma 2.1, one shows that

\[
f^m_n(\alpha, \delta) \text{ is continuous, strictly increasing, and } \lim_{\alpha \to 0} f^m_n(\alpha, \delta) = 0,
\]

\[
l_0 = \lim_{\alpha \to 0} f^m_n(\alpha, \delta) = 0 \text{ for } \alpha \to 0.
\]

Further, \((1-K(2n-1)b_m^2/\alpha) \) is continuous and positive for \(\alpha > 0 \), and \((1-K(2n-1)b_m^2/\alpha) \) is continuous, strictly increasing for \(\alpha > 0 \), and \(\lim_{\alpha \to 0} (1-K(2n-1)b_m^2/\alpha) = 0 \).

Proof of Lemma 3.4. Since the operators \((I^{n+1T})_1 \) and \(P_m \) commute, and

\[
T_m = P_m^{n+1T},
\]

we have for each \(J > 1 \)

\[
(\mathbf{A.7}) \quad a_{m,n} a_{m,n}^j z_{a_{m,n},a_{m,n}^j} = z_{a_{m,n},a_{m,n}^j} (a_{m,n}^j)^{-1} p_m^{j-1} a_{m,n}^{j-1} = p_m^{j-1} a_{m,n}^{j-1} z_{a_{m,n},a_{m,n}^j}
\]

\[
- (a_{m,n}^j)^{-1} p_m^{j-1} (a_{m,n}^{j-1})^{-1} (+ a_{m,n}^{j-1} p_m^{j-1} a_{m,n}^j).
\]
Further, we get

\[(A.8) \quad P_m(a_1 T^{m-1}_m - (a_1 T^{m-1}_m - 1)^{-1}) = a_{(m-1)} T^{m-1}_m = (1 - 1_{m-1})(1 - P_m) \]

\[= (1 - 1_{m-1})(1 - P_m). \]

Since \[\|a (a_1 T^{m-1}_m)^{-1}\| \leq 1\] and \[\|((a_1 T^{m-1}_m)^{-1} - 1)^{-1}\| \leq 2^{-1/2},\] we obtain from (A.7) and (A.8), for each \(j > 1,\)

\[(A.9) \quad \|z_j a_{(m, j)} - z_a\|^2 \leq \|z_j a_{(m, j)} - z_a\|^2 + \|a (a_1 T^{m-1}_m)^{-1} (1 - P_m) z_a\|^2 \]

\[+ \|((a_1 T^{m-1}_m)^{-1} - 1)^{-1} 1_{m-1} T^{m-1}_m (1 - P_m) z_a\|^2 \leq \|z_j a_{(m, j)} - z_a\|^2 + (1 + b_m a^{-1/2})(1 - P_m) z_a. \]

Since \[\|z_j a_{(m, j)} - z_a\|^2 \leq \|z_j a_{(m, j)} - z_a\|^2 + (1 + b_m a^{-1/2})(1 - P_m) z_a,\]

we obtain by (A.9), for each \(j \in \mathbb{N},\)

\[(A.10) \quad \|z_j a_{(m, j)} - z_a\|^2 \leq \sum_{j=1}^N (1 + b_m a^{-1/2})(1 - P_m) z_a. \]

Because of \(\xi_0 a_{(m, 0)} - x_0 = \sum_{j=1}^N (z_j a_{(m, j)} - z_a),\) this implies

\[\|\xi_0 a_{(m, 0)} - x_0\|^2 \leq \sum_{j=1}^N (1 + b_m a^{-1/2})(1 - P_m) z_a \]

\[= \sum_{j=1}^N (n+j+1)(1+b_m a^{-1/2})(1-P_m) z_a \]

\[= \sum_{j=1}^n (n+j+1)(1+b_m a^{-1/2})(1-P_m) z_a \]

Proof of Lemma 3.5. Since \[\|a (a_1 T^{m-1}_m)^{-1}\| \leq 1\] and \(a \geq \gamma_m^2,\) we obtain, for each \(j \in \mathbb{N},\)

\[\|(1 - P_m) z_a\|^2 \leq \|(1 - P_m) z_a\|^2 \leq \gamma_m(\gamma_m^2 + 1)\|z_a\|^2. \]

This, together with (A.2) and (A.3), implies \[\|(1 - P_m) z_a\|^2 \leq 2\|z_a\|^2. \]

Since \(b_m \geq \gamma_m,\) the assertions follow from (A.5), (A.6) and Lemma 3.4.

Proof of Lemma 3.7. A simple calculation gives

\[(A.11) \quad \|x_n a_{(m, n)} y\|^2 = \|x_n a_{(m, n)} y\|^2 + 2 \|x_n a_{(m, n)} y\|^2 - 2 \|x_n a_{(m, n)} y\|^2 \]

\[+ \|y a_{(m, n)} y\|^2. \]

Since \(a_{(m, n)} = a_{(m, n)} \) and \(0_{m, 0} < 0_{m, 0},\) we obtain

\[2 \|x_n a_{(m, n)} y\|^2 = 2 \|x_n a_{(m, n)} y\|^2 = 2 \|x_n a_{(m, n)} y\|^2 = 2 \|x_n a_{(m, n)} y\|^2 \]

\[= 2 \|x_n a_{(m, n)} y\|^2 = 2 \|x_n a_{(m, n)} y\|^2 = 2 \|x_n a_{(m, n)} y\|^2 \]

\[\leq 2b_n \|x_n a_{(m, n)} y\|^2 \leq (1/k) \|x_n a_{(m, n)} y\|^2. \]
One can easily prove by induction that
\[\sum_{j=1}^{n} a^{j-1}(a+T_{m}^{*})^{-(j-1)/2}Q_{m}y = \sum_{j=1}^{n} \frac{a^{j-1}}{T_{m}^{*}} Q_{m}y. \]

Thus, together with (A.12), yields
\[\begin{align*}
\sum_{j=1}^{n} a^{j-1}(a+T_{m}^{*})^{-(j-1)/2}Q_{m}y & \leq \sum_{j=1}^{n} \frac{a^{j-1}}{T_{m}^{*}} Q_{m}y \\
& = \sum_{j=1}^{n} a^{j-1}(a+T_{m}^{*})^{-(j-1)/2}Q_{m}y.
\end{align*} \]

Together with (A.11), this implies
\[\begin{align*}
|x_{a,m}^{n} - T_{m}^{*}y| & \leq |x_{a,m}^{n} - T_{m}^{*}y| + |T_{m}^{*}y - T_{m}^{*}y| \\
& \leq \sum_{j=1}^{n} a^{j-1}(a+T_{m}^{*})^{-(j-1)/2}Q_{m}y + (1/K)|\{1-P_{m}\}T_{m}^{*}y|.
\end{align*} \]

Further, (A.11) implies
\[\begin{align*}
|x_{a,m}^{n} - T_{m}^{*}y| & \leq |x_{a,m}^{n} - T_{m}^{*}y| + |T_{m}^{*}y - T_{m}^{*}y| \\
& \leq |x_{a,m}^{n} - T_{m}^{*}y| + 2|a^{n}T_{m}^{*}y - T_{m}^{*}y|.
\end{align*} \]

and this, together with (A.13) and (A.14), yields the second part of the inequality.

Proof of Lemma 3.8. Since \(|a^{j-1}/a+T_{m}^{*}|^{-(j-1)/2} \leq 1 \), we obtain
\[q_{j,m}(a) = |a^{j-1}/a+T_{m}^{*}|^{-(j-1)/2}a^{j-1}Q_{m}y \leq |a+T_{m}^{*}|^{-(j-1)/2}a^{j-1}Q_{m}y. \]

Since \(Q_{m} = Q_{m} Q_{m} \) and \(|T_{m}^{*} - T_{m}^{*}| = |Q_{m}-T_{m}^{*}| = \gamma_{m} \), we obtain
\[\begin{align*}
|a+T_{m}^{*}|^{-(j-1)/2}Q_{m}y & \leq |a+T_{m}^{*}|^{-(j-1)/2}Q_{m}y - |a+T_{m}^{*}|^{-1}Q_{m}y \\
& = |a+T_{m}^{*}|^{-1}Q_{m}y - |a+T_{m}^{*}|^{-1}Q_{m}y.
\end{align*} \]

Thus, \(b_{m}^{2}q_{j,m}(a) \leq b_{m}^{2}(2+\gamma_{m}^{2}/a^{2})|a+T_{m}^{*}|^{-1}Q_{m}y \), and one can now show in the same way as in the proof of Lemma 3.5 the validity of the assertion.

Proof of Lemma 3.19. A routine, albeit tedious, calculation yields that the derivative of the objective function is given by
\[(1-K(2n-1)/a^{2})\{r_{m}(a) - n^{-2}\} 2n/a. \]

Our assertion can now be validated, using the same arguments as in the proof of Lemma 2.6.
APPENDIX 3. COMPUTATIONAL ASPECTS.

For computing $x^m(s), s, m$ given by (1.12), one chooses a basis (z_1, \ldots, z_m) of V_m, computes the $m \times m$ matrices $B_m = \langle Tz_1, Tz_j \rangle$ and $M_m = \langle z_1, z_j \rangle$ and the vector $y_m = \langle Tz_1, y_j \rangle$.

To compute the regularization parameter $\alpha_m(s)$, note that $Q_{m}y_{m} = \sum_{i=1}^{m} u_i Tz_i$ if and only if $u \in \mathbb{R}^m$ solves

$$(A.15) \quad B_{m}u = y_{m}.$$

Hence,

$$(A.16) \quad f_m^0(u, y_j) = 2^{n+1} \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle = (w^0)^T B_{m}w^0,$$

where w^0 is defined by

$$(A.17) \quad \sum_{i=1}^{m} w^0_i z_i = a (M_m(a1Tz_{m})^T)^{-1} \sum_{i=1}^{m} u_i Tz_i,$$

For practical computations we use the iteration formula

$$(A.18) \quad w^0; = u; \quad (a M_m + B_m)w^{j+1} = a M_m w^j; \quad j = 0, 1, \ldots, n.$$

Further, we have

$$d \quad r_m^*(a, y_j) = 2^{n+1} \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle = (2n+1)^2 \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle$$

$$= (2n+1)^2 \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle = (2n+1)^2 \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle$$

$$= (2n+1)^2 \langle M_m(a1Tz_{m})^T z_j, \sum_{i=1}^{m} u_i Tz_i \rangle$$

Thus, we might apply a Modified Newton Method (cf. [22], Algorithm 5.4.2.4) for solving (3.4). The convergence is global and locally quadratic. Note that for $s = 0$ the regularization parameter is simply given by $\alpha_m(0) = (2n-1) K_b m^2$.

If $u \in \mathbb{R}^m$ is given by (A.15), i.e., $Q_m y_{m} = \sum_{i=1}^{m} u_i Tz_i$, we obtain

$$x^m_{a, 0, m} = \sum_{j=1}^{n} (a1Tz_{m})^{-1} Tz_j y_j = \sum_{j=1}^{n} (a1Tz_{m})^{-1} Tz_j y_j$$

$$= \sum_{j=1}^{n} (a1Tz_{m})^{-1} Tz_j y_j = \sum_{j=1}^{n} (a1Tz_{m})^{-1} Tz_j y_j$$

where w^0 is given by (A.17). Thus, determination of $\alpha_m(0)$ yields also $x^m_{a, 0, m}, s, m$ without any computational effort. For the computation of b_m one can choose an orthonormal basis $(q_1, \ldots, q_{\hat{m}})$ of $R(T_m)$, where $\hat{m} = \dim R(T_m)$. Then b_m^2 is the largest eigenvalue of the $\hat{m} \times \hat{m}$ matrix

$$(A.19) \quad C_m = (\langle 1-P_m \rangle T^* q_j, (1-P_m) T^* q_j).$$

To compute the projection $(1-P_m)x$, note that $P_m x = \sum_{i=1}^{m} y_i z_i$ if and only if
The scalar products needed for computing the right-hand side of (A.20), resp.
the elements of C_m, are also approximated by Simpson's rule.

For our example, one could compute the numbers b_m exactly by using other
integration formulas, since on each interval $[(i-1)/m, i/m]$ the function $\tau^n T_{\xi_j}$
is a polynomial with maximal degree 5. However, the method described so far may
also be used for other kernels.

We see that iterated Tikhonov regularization is not much more expensive to compute
than ordinary Tikhonov regularization, since the iteration (A.18) always involves
the same operator, i.e., one Cholesky decomposition suffices. Incidentally,
computation of the matrix B_m costs more time than determining b_m and the
regularization parameter $\alpha_m(\delta)$.

\begin{equation*}
(A.20) \quad M_m = \{ \langle z, x \rangle \}.
\end{equation*}

In our example, we chose V_m as a space of linear splines on a uniform grid of
$(m+1)$ points in $[0,1]$. As basis functions we took z_1, \ldots, z_{m+1} having the
property that $z_1((i-1)/m) = 1$ and z_i vanishes at all other nodes. The elements
of the tridiagonal matrix M_m were computed explicitly. The functions T_{ξ_j} were
evaluated on a uniform grid of $4m+1$ points in $[0,1]$. Finally, the scalar products
needed for computing the elements of B_m and Y_m were approximated by Milne's
rule (cf. [22]). Hence, $B_m = V^T D V$, $Y_m = V^T D \tilde{y}$, where V is the $(4m+1) \times m$ matrix
with elements $V_{ji} = T_{\xi_j}((j/(4m+1)))$, D is a $(4m+1) \times (4m+1)$ diagonal matrix with
diagonal elements representing the weights of Milne's rule, and $\tilde{y} \in \mathbb{R}^{4m+1}$ is
given by $\tilde{y}_j = y_\xi((j/(4m+1)))$.

Note that (A.15) is equivalent to the least squares problem $\min \{ D^{1/2} (V \tilde{y} - \tilde{y}) \}$,
which may be solved in a numerically stable way by a QR factorization with
pivoting, or by a singular value decomposition of the matrix $D^{1/2}V$ (see [7, pp.162-177]). In both cases, we obtain m_1 orthogonal (with respect to the inner
product in \mathbb{R}^{4m+1}) vectors $\tilde{q}_1, \ldots, \tilde{q}_{m_1}$ with $m_1 = \text{rank}(V)$, such that

$D^{-1/2} \tilde{q}_i, \ldots, D^{-1/2} \tilde{q}_{m_1}$ forms a basis for $R(V)$ and $(D^{-1/2} \tilde{q}_i)^T D (D^{-1/2} \tilde{q}_j) = 0$
for $i \neq j$, resp. $(D^{-1/2} \tilde{q}_i)^T D (D^{-1/2} \tilde{q}_i) = 1$.

In our examples we used this set $(D^{-1/2} \tilde{q}_1, \ldots, D^{-1/2} \tilde{q}_{m_1})$ as an approximation
for an orthogonal basis (q_1, \ldots, q_{m_1}) of $R(T_m)$. Using Simpson's rule, the functions
T_{ξ_j} were then approximately evaluated on a grid of $(2m+1)$ points on $[0,1]$.