-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems

Author:
U. Anantha Krishnaiah

Journal:
Math. Comp. **49** (1987), 553-559

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906188-X

MathSciNet review:
906188

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper *P*-stable methods of and with minimal phase-lag (frequency distortion) are derived. Numerical results for both linear and nonlinear problems are presented.

**[1]**U. Anantha Krishnaiah,*A class of two-step P-stable methods for the accurate integration of second order periodic initial value problems*, J. Comput. Appl. Math.**14**(1986), no. 3, 455–459. MR**831087**, https://doi.org/10.1016/0377-0427(86)90080-4**[2]**L. Brusa & L. Nigro, "A one-step method for direct integration of structural dynamic equations,"*Internat. J. Numer. Methods Engrg.*, v. 15, 1980, pp. 685-699.**[3]**J. R. Cash,*High order 𝑃-stable formulae for the numerical integration of periodic initial value problems*, Numer. Math.**37**(1981), no. 3, 355–370. MR**627110**, https://doi.org/10.1007/BF01400315**[4]**M. M. Chawla,*Two-step fourth order 𝑃-stable methods for second order differential equations*, BIT**21**(1981), no. 2, 190–193. MR**627879**, https://doi.org/10.1007/BF01933163**[5]**M. M. Chawla and P. S. Rao,*A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems*, J. Comput. Appl. Math.**11**(1984), no. 3, 277–281. MR**777103**, https://doi.org/10.1016/0377-0427(84)90002-5**[6]**Germund Dahlquist,*On accuracy and unconditional stability of linear multistep methods for second order differential equations*, BIT**18**(1978), no. 2, 133–136. MR**499228**, https://doi.org/10.1007/BF01931689**[7]**Walter Gautschi,*Numerical integration of ordinary differential equations based on trigonometric polynomials*, Numer. Math.**3**(1961), 381–397. MR**0138200**, https://doi.org/10.1007/BF01386037**[8]**I. Gladwell and R. M. Thomas,*Damping and phase analysis for some methods for solving second-order ordinary differential equations*, Internat. J. Numer. Methods Engrg.**19**(1983), no. 4, 495–503. MR**702055**, https://doi.org/10.1002/nme.1620190404**[9]**E. Hairer,*Unconditionally stable methods for second order differential equations*, Numer. Math.**32**(1979), no. 4, 373–379. MR**542200**, https://doi.org/10.1007/BF01401041**[10]**M. K. Jain, R. K. Jain, and U. Anantha Krishnaiah,*𝑃-stable methods for periodic initial value problems of second order differential equations*, BIT**19**(1979), no. 3, 347–355. MR**548614**, https://doi.org/10.1007/BF01930988**[11]**J. D. Lambert and I. A. Watson,*Symmetric multistep methods for periodic initial value problems*, J. Inst. Math. Appl.**18**(1976), no. 2, 189–202. MR**0431691****[12]**E. Stiefel and D. G. Bettis,*Stabilization of Cowell’s method*, Numer. Math.**13**(1969), 154–175. MR**0263250**, https://doi.org/10.1007/BF02163234**[13]**R. M. Thomas,*Phase properties of high order, almost 𝑃-stable formulae*, BIT**24**(1984), no. 2, 225–238. MR**753550**, https://doi.org/10.1007/BF01937488**[14]**R. van Dooren, "Stabilization of Cowell's classical finite difference method for numerical integration,"*J. Comput. Phys.*, v. 16, 1974, pp. 186-192.

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906188-X

Keywords:
*P*-stable,
Obrechkoff,
phase-lag,
periodic initial value problems,
second-order differential equations,
undamped Duffing's equation

Article copyright:
© Copyright 1987
American Mathematical Society