Some inequalities for continued fractions

Author:
R. M. Dudley

Journal:
Math. Comp. **49** (1987), 585-593

MSC:
Primary 40A15; Secondary 33A20, 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906191-X

MathSciNet review:
906191

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For some continued fractions with *m*th convergent , it is shown that relative errors are monotone in some arguments. If all the entries and in *Q* are positive, then the relative error is bounded by , which is nonincreasing in the partial denominator for each , as is for . If for all , , and where and for *j* even, , then is bounded by , and both are nonincreasing in for even . These facts apply to continued fractions of Euler, Gauss and Laplace used in computing Poisson, binomial and normal probabilities, respectively, giving monotonicity of relative errors as functions of the variables in suitable ranges.

**[1]**G. Boese,*An a priori estimate for the truncation error of a continued fraction expansion to the Gaussian error function*, Computing**29**(1982), no. 2, 135–152 (English, with German summary). MR**678276**, https://doi.org/10.1007/BF02249937**[2]**B. E. Cooper, "Algorithm AS2, the normal integral,"*Applied Statist.*(*J. Roy. Statist. Soc. Ser. C*), v. 17, 1968, pp. 186-187.**[3]**L. Euler, "De fractionibus continuis dissertatio,"*Commentarii Acad. Sci. Petrop.*, v. 9, 1744, pp. 98-137.**[4]**L. Euler, "De seriebus divergentibus",*Novi commentarii Acad. Sci. Petrop.*, v. 5, 1760, pp. 205-237.**[5]**L. Euler (posth.), "De transformatione seriei divergentis in fractionem continuam,"*Nova acta Acad. Sci. Petrop.*, v. 2, 1788, pp. 36-45.**[6]**L. Euler,*Opera Omnia*, Ser. 1, Teubner, Leipzig and Berlin, Vols. 1-23, 1911-1938; Orell Füssli, Zürich, Vols. 23-29, 1938-1956.**[7]**Walter Gautschi,*Anomalous convergence of a continued fraction for ratios of Kummer functions*, Math. Comp.**31**(1977), no. 140, 994–999. MR**0442204**, https://doi.org/10.1090/S0025-5718-1977-0442204-3**[8]**Walter Gautschi,*A computational procedure for incomplete gamma functions*, Rend. Sem. Mat. Univ. Politec. Torino**37**(1979), no. 1, 1–9 (Italian). MR**547763****[9]**Walter Gautschi,*On the convergence behavior of continued fractions with real elements*, Math. Comp.**40**(1983), no. 161, 337–342. MR**679450**, https://doi.org/10.1090/S0025-5718-1983-0679450-2**[10]**A. M. Legendre,*Traités des Fonctions Elliptiques et des Intégrales Euleriennes*, Vol. 2, Paris, 1826.**[11]**André Markoff,*Nouvelles applications des fractions continues*, Math. Ann.**47**(1896), no. 4, 579–597 (French). MR**1510918**, https://doi.org/10.1007/BF01445804**[12]**A. A. Markov,*Isčislenie Veroiatnosteĭ*(in Russian), 4th ed., posth., Moscow, 1924.**[13]**J. Oliver,*Relative error propagation in the recursive solution of linear recurrence relations*, Numer. Math.**9**(1966/1967), 323–340. MR**0213064**, https://doi.org/10.1007/BF02162423**[14]**David B. Peizer and John W. Pratt,*A normal approximation for binomial, 𝐹, beta, and other common, related tail probabilities. I*, J. Amer. Statist. Assoc**63**(1968), 1416–1456. MR**0235650****[15]**O. Perron,*Die Lehre von den Kettenbrüchen*, Teubner, Leipzig, 1929.**[16]**P. Van der Cruyssen,*A continued fraction algorithm*, Numer. Math.**37**(1981), no. 1, 149–156. MR**615897**, https://doi.org/10.1007/BF01396192**[17]**Haakon Waadeland,*A note on partial derivatives of continued fractions*, Analytic theory of continued fractions, II (Pitlochry/Aviemore, 1985) Lecture Notes in Math., vol. 1199, Springer, Berlin, 1986, pp. 294–299. MR**870253**, https://doi.org/10.1007/BFb0075944**[18]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596**

Retrieve articles in *Mathematics of Computation*
with MSC:
40A15,
33A20,
65D20

Retrieve articles in all journals with MSC: 40A15, 33A20, 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906191-X

Keywords:
Alternating continued fractions,
monotonicity of errors

Article copyright:
© Copyright 1987
American Mathematical Society