Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some inequalities for continued fractions


Author: R. M. Dudley
Journal: Math. Comp. 49 (1987), 585-593
MSC: Primary 40A15; Secondary 33A20, 65D20
DOI: https://doi.org/10.1090/S0025-5718-1987-0906191-X
MathSciNet review: 906191
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For some continued fractions $ Q = {b_0} + {a_1}/({b_1} + \cdots )$ with mth convergent $ {Q_m}$, it is shown that relative errors are monotone in some arguments. If all the entries $ {a_j}$ and $ {b_j}$ in Q are positive, then the relative error $ \vert{Q_m}/Q - 1\vert$ is bounded by $ \vert{Q_m}/{Q_{m + 1}} - 1\vert$, which is nonincreasing in the partial denominator $ {b_j}$ for each $ j \geqslant 0$, as is $ \vert{Q_m}/Q - 1\vert$ for $ j \leqslant m + 1$. If $ {b_j} \geqslant 1$ for all $ j \geqslant 1$, $ {b_0} \geqslant 0$, and $ {a_j} = {( - 1)^{j + 1}}{c_j}$ where $ {c_j} \geqslant 0$ and for j even, $ {c_j} < 1$, then $ \vert{Q_m}/Q - 1\vert$ is bounded by $ \vert{Q_m}/{Q_{m + 2}} - 1\vert$, and both are nonincreasing in $ {b_j}$ for even $ j \leqslant m + 2$. These facts apply to continued fractions of Euler, Gauss and Laplace used in computing Poisson, binomial and normal probabilities, respectively, giving monotonicity of relative errors as functions of the variables in suitable ranges.


References [Enhancements On Off] (What's this?)

  • [1] G. Boese, "An a priori estimate for the truncation error of a continued fraction expansion to the Gaussian error function," Computing, v. 29, 1982, pp. 135-152. MR 678276 (84f:33002)
  • [2] B. E. Cooper, "Algorithm AS2, the normal integral," Applied Statist. (J. Roy. Statist. Soc. Ser. C), v. 17, 1968, pp. 186-187.
  • [3] L. Euler, "De fractionibus continuis dissertatio," Commentarii Acad. Sci. Petrop., v. 9, 1744, pp. 98-137.
  • [4] L. Euler, "De seriebus divergentibus", Novi commentarii Acad. Sci. Petrop., v. 5, 1760, pp. 205-237.
  • [5] L. Euler (posth.), "De transformatione seriei divergentis $ 1 - mx + m(m + n){x^2} - m(m + n) \cdot (m + 2n){x^3} + m(m + n)(m + 2n)(m + 3n){x^4} - {\text{etc}}.$ in fractionem continuam," Nova acta Acad. Sci. Petrop., v. 2, 1788, pp. 36-45.
  • [6] L. Euler, Opera Omnia, Ser. 1, Teubner, Leipzig and Berlin, Vols. 1-23, 1911-1938; Orell Füssli, Zürich, Vols. 23-29, 1938-1956.
  • [7] W. Gautschi, "Anomalous convergence of a continued fraction for ratios of Kummer functions," Math. Comp., v. 31, 1977, pp. 994-999. MR 0442204 (56:590)
  • [8] W. Gautschi, "A computational procedure for incomplete gamma functions," ACM Trans. Math. Software, v. 5, 1979, pp. 466-481. MR 547763 (81f:65015)
  • [9] W. Gautschi, "On the convergence behavior of continued fractions with real elements," Math. Comp., v. 40, 1983, pp. 337-342. MR 679450 (84i:40001)
  • [10] A. M. Legendre, Traités des Fonctions Elliptiques et des Intégrales Euleriennes, Vol. 2, Paris, 1826.
  • [11] A. A. Markov, "Nouvelles applications des fractions continues," Math. Ann., v. 47, 1896, pp. 579-597. MR 1510918
  • [12] A. A. Markov, Isčislenie Veroiatnosteĭ (in Russian), 4th ed., posth., Moscow, 1924.
  • [13] J. Oliver, "Relative error propagation in the recursive solution of linear recurrence relations," Numer. Math., v. 9, 1967, pp. 323-340. MR 0213064 (35:3929)
  • [14] D. B. Peizer & J. W. Pratt, "A normal approximation for binomial, F, beta, and other common, related tail probabilities, I," J. Amer. Statist. Assoc., v. 63, 1968, pp. 1416-1456. MR 0235650 (38:3953)
  • [15] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1929.
  • [16] P. Van der Cruyssen, "A continued fraction algorithm," Numer. Math., v. 37, 1981, pp. 149-156. MR 615897 (83g:30006)
  • [17] H. Waadeland, "A note on partial derivatives of continued fractions," Analytic Theory of Continued Fractions II, Proceedings, Pitlochry and Aviemore, 1985 (W. J. Thron, ed.), Lecture Notes in Math., vol. 1199, Springer-Verlag, Berlin and New York, 1986, pp. 294-299. MR 870253 (88e:30011)
  • [18] H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, N. J., 1948. MR 0025596 (10:32d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 40A15, 33A20, 65D20

Retrieve articles in all journals with MSC: 40A15, 33A20, 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0906191-X
Keywords: Alternating continued fractions, monotonicity of errors
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society