A Table of Elliptic Integrals of the Second Kind*

By B. C. Carlson

Abstract. By evaluating elliptic integrals in terms of standard R-functions instead of Legendre's integrals, many (in one case 144) formulas in previous tables are unified. The present table includes only integrals of the first and second kinds having integrands with real singular points. The 216 integrals of this type listed in Gradshteyn and Ryzhik's table constitute a small fraction of the special cases of 13 integrals evaluated here. The interval of integration is not required, as it is in previous tables, to begin or end at a singular point of the integrand. Fortran codes for the standard R-functions are included in a Supplement.

1. Introduction. Let

\[[p] = [p_1, p_2, \ldots, p_n] = \int_\gamma (a_1 + b_1 t)^{p_1/2} \cdots (a_n + b_n t)^{p_n/2} \, dt, \]

where \(p_1, \ldots, p_n \) are nonzero integers, the integrand is real, and the integral is assumed to be well defined. Many integrals like

\[\int (1 - k^2 \sin^2 \phi)^{p_1/2} \, d\phi \quad \text{and} \quad \int (a + bz^2)^{p_1/2} (c + dz^2)^{p_2/2} \, dz \]

can be put in the form (1.1) by letting \(t = \sin^2 \phi \) or \(t = z^2 \).

For purposes of classification we assume the \(b \)'s are nonzero and no two of the quantities \(a_i + b_i t \) are proportional. If at most two \(p \)'s are odd, the integral (1.1) is elementary. If exactly three \(p \)'s are odd (the "cubic case"), the integral is elliptic of the first or second kind if all the even \(p \)'s are positive, and otherwise it is third kind. The only such integral of the first kind is \([-1, -1, -1]\). If exactly four \(p \)'s are odd (the "quartic case"), the integral is elliptic of the first or second kind if all the even \(p \)'s are positive and \(p_1 + \cdots + p_n \leq -4 \); otherwise it is third kind. The only such integral of the first kind is \([-1, -1, -1, -1] \). If more than four \(p \)'s are odd, the integral is hyperelliptic.

Integrals of the first kind are traditionally expressed in terms of Legendre's \(F(\phi, k) \) with \(0 < k \leq 1 \) and \(0 \leq \phi \leq \pi/2 \). Integrals of the second kind require

Received October 6, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 33A25; Secondary 33A30.

*Part of this work was done at the University of Maryland, where the author was a visitor at the Institute for Physical Science and Technology, with the support of AROD contract DAAG 29-80-C-0032. The rest was done in the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under contract no. W-7405-ENG-82. The work was supported by the Director of Energy Research, Office of Basic Energy Sciences.

©1987 American Mathematical Society
0025-5718/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We shall replace F by the symmetric integral

$$R_F(x, y, z) = \frac{1}{2} \int_{\phi}^{\infty} [(t + x)(t + y)(t + z)]^{-1/2} dt$$

and E by

$$R_D(x, y, z) = \frac{3}{2} \int_{\phi}^{\infty} (t + x)^{-1/2}(t + y)^{-1/2}(t + z)^{-3/2} dt.$$

These R-functions are homogeneous:

$$R_F(\lambda x, \lambda y, \lambda z) = \lambda^{-1/2} R_F(x, y, z),$$

$$R_D(\lambda x, \lambda y, \lambda z) = \lambda^{-3/2} R_D(x, y, z),$$

and they are normalized so that

$$R_F(x, x, x) = x^{-1/2}, \quad R_D(x, x, x) = x^{-3/2}.$$

Fortran codes [6] for computing R_F and R_D when x, y, z are real and nonnegative are listed in the Supplements section of this issue and can be found also in most of the major software libraries. Customary integral tables [1], [7], [9] assume that the interval of integration begins or ends at a branch point of the integrand, and many special cases are listed according to the positions of the other branch points relative to the interval of integration and to one another. If the integral at hand does not have either limit of integration at a branch point, it must be split into two parts that do. In the present paper these two parts are recombined by the addition theorem, and the need to specify the relative positions of the branch points then disappears. The use of R-functions greatly facilitates the application of the addition theorem and leads to a further unification that cannot be achieved with Legendre's integrals, because the expressions for $R_F(x, y, z)$ and $R_D(x, y, z)$ in terms of Legendre's integrals with $0 < k < 1$ and $0 < \phi < \pi/2$ depend on the relative sizes of $x, y,$ and z (see [5, (4.1), (4.2)], (5.25), and (5.32)).

Integrals of the third kind and integrands with conjugate complex branch points, resulting from an irreducible quadratic factor $a_i + b_i t + c_i t^2,$ will be deferred to later papers. (Integrals of the first kind with quadratic factors are treated in [3].) The main table in Section 2 consists of quartic cases, since cubic cases can be obtained from these by putting $a_i = 1$ and $b_i = 0$ for various choices of $i.$ To select integrals that are relatively simple and occur most commonly in practice, we arbitrarily require $\sum |p_i| \leq 8.$ Apart from permutation of subscripts in (1.1), there are just nine quartic cases of the first or second kind satisfying this criterion: $[-1,-1,-1,-1], [1,-1,-1,-3], [-1,-1,-1,-3,2], [-1,-1,-3,-3], [1,-1,-3,-3], [1,1,-3,-3], [-1,-1,-1,-5], [1,1,-1,-5],$ and $[1,1,-1,-5].$ The integral $[-1,-1,-1,-3]$ is a special case of $[-1,-1,-1,-3,2]$ with $a_5 = 1$ and $b_5 = 0.$

Section 3 presents four cubic cases not contained in the nine quartic cases: $[3,-1,-3], [3,-1,-1], [-3,-3,-3],$ and $[1,1,1].$

The method of evaluating the integrals is discussed in Sections 4 and 5. The fundamental integrals are $[-1,-1,-1,-1]$ and $[1,-1,-1,-3],$ and the rest are obtained from these by recurrence relations. The single formula (2.7) for $[1,-1,-1,-3]$ replaces 72 cases occupying the nine pages of §3.168 in Gradshteyn and Ryzhik's
table [7], as well as 72 cubic cases: 18 cases of \([-1, -1, -3]\) in §3.133, 18 cases of \([1, -1, -1]\) in §3.141, and 36 cases of \([1, -1, -3]\) in §3.142.

By using [5, (4.1), (4.2)], (2.6) was checked against formulas 1, 3, 5, 7 of [7, §3.147], and (2.7) was checked against formulas 1, 5, 42, 70 of [7, §3.168]. The nine integrals in Section 2 and the four in Section 3 were checked numerically to 6S for \(y = 0.5, x = 2.0, a_i = 0.5 + i, b_i = 2.5 - i\) by the SLATEC numerical quadrature routine QNG and the routines for \(R_F\) and \(R_D\) in the Supplements section of this issue.

2. Table of Quartic Cases. We assume \(x > y\) and \(a_i + b_i t > 0, y < t < x\), for all \(i\), and we define

\[
d_{ij} = a_i b_j - a_j b_i,
\]

\[
X_i = (a_i + b_i x)^{1/2}, \quad Y_i = (a_i + b_i y)^{1/2},
\]

\[
U_{ij} = \left(X_i X_j Y_k Y_m + Y_i Y_j X_k X_m \right)/(x - y),
\]

where \(i, j, k, m\) is any permutation of 1, 2, 3, 4. These definitions imply

\[
U_{jk}^2 - U_{km}^2 = d_{ij} d_{km},
\]

and consequently the arguments of the \(R\)-functions appearing in the table differ by quantities independent of \(x\) and \(y\). If one limit of integration is infinite, (2.3) simplifies to

\[
U_{ij} = (b_i b_j)^{1/2} Y_k Y_m + Y_i Y_j (b_k b_m)^{1/2}, \quad x = +\infty,
\]

\[
U_{ij} = X_i X_j (b_k b_m)^{1/2} + (b_i b_j)^{1/2} X_k X_m, \quad y = -\infty,
\]

all square roots being nonnegative.

If one limit of integration is a branch point of the integrand, then \(X_i\) or \(Y_i\) will be 0 for some value of \(i\) (with \(p_i \geq -1\) since we assume that the integral exists), and one of the two terms in every \(U_{ij}\) will vanish. If both limits of integration are branch points, the elliptic integral is called complete, and one of the \(U_{ij}\) will be 0. It is not assumed that \(b_i \neq 0\) nor that \(d_{ij} \neq 0\) unless one of these quantities occurs in a denominator. The relation \(d_{ij} = 0\) is equivalent to proportionality of \(a_i + b_i t\) and \(a_j + b_j t\). The nine quartic cases listed in Section 1 follow. Only the first two are treated by Gradshteyn and Ryzhik [7, §3.147, §3.168].

\[
\int_y^x [(a_1 + b_1 t)(a_2 + b_2 t)(a_3 + b_3 t)(a_4 + b_4 t)]^{-1/2} dt
\]

\[
= 2 R_F(U_{12}^2, U_{13}^2, U_{14}^2).
\]

\[
\int_y^x (a_1 + b_1 t)^{1/2} [(a_2 + b_2 t)(a_3 + b_3 t)]^{-1/2} (a_4 + b_4 t)^{-3/2} dt
\]

\[
= 2 d_{12} d_{13} d_{14} R_D(U_{12}^2, U_{13}^2, U_{14}^2) + \frac{2 X_1 Y_1}{X_4 Y_4 U_{14}}.
\]
The next equation remains valid even if \(a_5 + b_5 t\) changes sign in the interval of integration.

\[
\int_{y}^{x} \left[(a_1 + b_1 t)(a_2 + b_2 t)(a_3 + b_3 t) \right]^{-1/2} \left[(a_4 + b_4 t) \right]^{-3/2} (a_5 + b_5 t) \, dt
\]

\[(2.8)\]

\[
\begin{align*}
\int_{y}^{x} & \left[(a_1 + b_1 t)(a_2 + b_2 t) \right]^{-1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-3/2} dt \\
& = \frac{2d_{13}d_{34}}{3d_{14}} R_D\left(U_{12}^2, U_{13}^2, U_{14}^2\right) \\
& \quad + \frac{2d_{15}}{d_{14}} R_F\left(U_{12}^2, U_{13}^2, U_{14}^2\right) \\
& \quad + \frac{2d_{34}}{d_{14}} X_1^2 Y_1 \\
& \quad + \frac{2d_{34}}{d_{14}} X_4^2 Y_4 U_{14} \\
& \quad \cdot \left(a_1 + b_1 t \right)^{1/2} \left(a_2 + b_2 t \right)^{-1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-3/2} dt
\end{align*}
\]

\[(2.9)\]

\[
\begin{align*}
\int_{y}^{x} & \left[(a_1 + b_1 t)(a_2 + b_2 t) \right]^{-1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-3/2} dt \\
& = \frac{2}{3d_{34}^2} \left(b_3^2 d_{14} d_{24} + b_4^2 d_{13} d_{23} \right) R_D\left(U_{13}^2, U_{14}^2, U_{12}^2\right) \\
& \quad - \frac{4b_3 b_4}{d_{34}^2} R_F\left(U_{12}^2, U_{13}^2, U_{14}^2\right) \\
& \quad + \frac{2b_3 d_{13} X_4 Y_4}{d_{34}^2 U_{12} X_3 Y_3} + \frac{2b_4 d_{14} X_3 Y_3}{d_{34}^2 U_{12} X_4 Y_4} \\
& \quad \cdot \left(a_1 + b_1 t \right)^{1/2} \left(a_2 + b_2 t \right)^{-1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-3/2} dt
\end{align*}
\]

\[(2.10)\]

\[
\begin{align*}
\int_{y}^{x} & \left[(a_1 + b_1 t)(a_2 + b_2 t) \right]^{1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-3/2} dt \\
& = \frac{4d_{13}d_{34} d_{24}}{3d_{34}^2} R_D\left(U_{12}^2, U_{13}^2, U_{14}^2\right) + \frac{2d_{12}}{d_{34}} R_F\left(U_{12}^2, U_{13}^2, U_{14}^2\right) \\
& \quad + \frac{2}{d_{34} U_{14}} \left(\frac{d_{24} X_1 Y_1}{X_4 Y_4} - \frac{d_{13} X_2 Y_2}{X_3 Y_3} \right) \\
& \quad \cdot \left(a_1 + b_1 t \right)^{1/2} \left(a_2 + b_2 t \right)^{-1/2} \left[(a_3 + b_3 t)(a_4 + b_4 t) \right]^{-5/2} dt
\end{align*}
\]

\[(2.11)\]
A TABLE OF ELLIPTIC INTEGRALS OF THE SECOND KIND

\[\int \left(a_1 + b_1 t \right)^{1/2} \left[\left(a_2 + b_2 t \right) (a_3 + b_3 t) \right]^{1/2} \left(a_4 + b_4 t \right)^{-5/2} dt \]

\[= \frac{2}{9} \left(\frac{b_1}{d_{14}} - \frac{2b_2}{d_{24}} - \frac{2b_3}{d_{34}} \right) \left(d_{12}d_{13} R_D \left(U_{12}^2, U_{13}^2, U_{14}^2 \right) + \frac{3X_1Y_1}{X_4Y_4U_{14}} \right) \]

\[- \frac{2b_4d_{12}d_{13}}{3d_{14}d_{24}d_{34}} R_F \left(U_{12}^2, U_{13}^2, U_{14}^2 \right) \]

\[- \frac{2b_4}{3d_{24}d_{34}} \left(X_1X_2X_3X_4^{-3} - Y_1Y_2Y_3Y_4^{-3} \right). \]

(2.13)

\[\int \left[\left(a_1 + b_1 t \right) (a_2 + b_2 t) \right]^{1/2} (a_3 + b_3 t)^{-1/2} (a_4 + b_4 t)^{-5/2} dt \]

\[= \frac{-2}{9d_{14}d_{34}} \left(d_{12}^2d_{24} + d_{23}d_{14} \right) \left(d_{12}d_{13} R_D \left(U_{12}^2, U_{13}^2, U_{14}^2 \right) + \frac{3X_1Y_1}{X_4Y_4U_{14}} \right) \]

\[- \frac{2d_{12}d_{13}}{3d_{14}d_{34}} R_F \left(U_{12}^2, U_{13}^2, U_{14}^2 \right) \]

\[- \frac{2}{3d_{34}} \left(X_1X_2X_3X_4^{-3} - Y_1Y_2Y_3Y_4^{-3} \right). \]

(2.14)

3. Cubic Cases. By putting \(a_i = 1 \) and \(b_i = 0 \) for various choices of \(i \), 13 cubic cases can be evaluated from the quartic cases in Section 2 and do not need to be listed separately. Eight of these are given by Gradshteyn and Ryzhik [7, §§3.131–3.135, 3.141, 3.142]: \([-1, -1, -1], [-1, -1, -1, 2], [-1, -1, -3], [-1, -1, -5], [-1, -3, -3], [1, -1, -1], [1, 1, -1], \) and \([1, -1, -3]\). They do not give the other five: \([1, 1, -3], [1, 1, -5], [1, -1, -5], [1, -3, -3], \) and \([-1, -1, -3, 2]\).

In this section we list four cubic cases not contained in the quartic cases of Section 2: \([3, -1, -3], [3, -1, -1], [-3, -3, -3]\), and \([1, 1, 1]\). Only \([-3, -3, -3]\) is given by Gradshteyn and Ryzhik [7, §3.136], and only two cases of this are listed. Each with an infinite limit of integration, because the integral diverges if it begins or ends at a finite branch point with \(p_i = -3 \). If the closed interval of integration lies in the open interval between two finite branch points with \(p_i = -3 \), there is no way to evaluate the integral by using previous tables.

In place of (2.3) we define

\[U_i = \left(X_iY_jY_k + Y_iX_jX_k \right) \left(x - y \right). \]

(3.1)

where \(i, j, k \) is any permutation of 1, 2, 3. Since this implies

\[U_i^2 - U_j^2 = b_k d_{ij}. \]

(3.2)

the arguments of the \(R \)-functions in the table differ by quantities independent of \(x \) and \(y \). If one limit of integration is infinite, (3.1) simplifies to

\[U_i = (b_ib_k)^{1/2} Y_i \text{ if } x = +\infty, \quad U_i = (b_ib_k)^{1/2} X_i \text{ if } y = -\infty. \]

(3.3)
the square roots being nonnegative. The remarks in the paragraph preceding (2.6) apply, after replacement of \(U_{ij} \) by \(U_i \), also to the following integrals.

\[
\int_x^y (a_1 + b_1 t)^{3/2}(a_2 + b_2 t)^{-1/2}(a_3 + b_3 t)^{-3/2} dt
\]

\[
(3.4) \quad = \frac{2d_{13}}{b_3d_{23}} \left\{ \frac{1}{3} d_{12}(b_1d_{23} + b_2d_{13}) R_D(U_2^2, U_3^2, U_1^2) - d_{12} R_F(U_1^2, U_2^2, U_3^2) + \frac{d_{13} X_2 Y_2}{X_3 Y_3 U_1} \right\} + \frac{2b_1 X_1 Y_1}{b_3 U_1}.
\]

\[
\int_x^y (a_1 + b_1 t)^{3/2}[(a_2 + b_2 t)(a_3 + b_3 t)]^{-1/2} dt
\]

\[
(3.5) \quad = \frac{4}{3b_2b_3} \left(b_2d_{13} + b_3d_{12} \right) \left\{ \frac{1}{3} d_{12}d_{13} R_D(U_2^2, U_3^2, U_1^2) + \frac{X_1 Y_1}{U_1} \right\}
\]

\[
-\frac{2d_{12}d_{13}}{3b_2b_3} R_F(U_1^2, U_2^2, U_3^2) + \frac{2b_1}{3b_2b_3} \left(X_1 X_2 X_3 - Y_1 Y_2 Y_3 \right).
\]

\[
\int_x^y \left[(a_1 + b_1 t)(a_2 + b_2 t)(a_3 + b_3 t) \right]^{-3/2} dt
\]

\[
(3.6) \quad = \frac{4b_1b_3}{3d_{12}} \left(\frac{b_1b_2}{d_{12}} + \frac{b_2b_3}{d_{23}} + \frac{b_1b_3}{d_{31}} \right) R_D(U_1^2, U_2^2, U_3^2)
\]

\[
+ \frac{2b_1b_2}{d_{12}^2} \left(\frac{b_1}{d_{13}} + \frac{b_2}{d_{23}} \right) R_F(U_1^2, U_2^2, U_3^2) + \frac{2b_3}{d_{13}d_{23}X_3 Y_3 U_3}
\]

\[
- \frac{2}{d_{13}U_3} \left(\frac{b_3^2X_1 Y_2}{d_{13}X_1 Y_1} + \frac{b^2_3X_1 Y_1}{d_{23}X_2 Y_2} \right)
\]

\[
= \sum \frac{2b_3^2}{d_{13}d_{23}} \left\{ \frac{1}{3} b_1 b_2 R_D(U_1^2, U_2^2, U_3^2) + \frac{1}{X_3 Y_3 U_3} \right\},
\]

where \(\Sigma \) denotes summation over cyclic permutations of the subscripts 1, 2, 3. The same notation is used in the next formula.

\[
\int_x^y \left[(a_1 + b_1 t)(a_2 + b_2 t)(a_3 + b_3 t) \right]^{1/2} dt
\]

\[
(3.7) \quad = -\frac{2(\Sigma b_1^2d_{23}^2)}{15b_1b_2b_3} \left\{ \frac{1}{3} d_{13}d_{23} R_D(U_1^2, U_2^2, U_3^2) + \frac{X_1 Y_3}{U_3} \right\}
\]

\[
-\frac{2d_{13}d_{23}}{15b_1b_2b_3} (b_1d_{23} + b_2d_{13}) R_F(U_1^2, U_2^2, U_3^2)
\]

\[
+ \frac{2}{15} X_1 X_2 X_3 \left(\frac{X_2^2}{b_1} + \frac{X_2^2}{b_2} + \frac{X_1^2}{b_3} \right) - \frac{2}{15} Y_1 Y_2 Y_3 \left(\frac{Y_1^2}{b_1} + \frac{Y_2^2}{b_2} + \frac{Y_3^2}{b_3} \right)
\]

\[
= \frac{2}{15} \sum \left\{ \frac{-d_{12}^2}{b_1b_2} \left(\frac{1}{3} d_{13}d_{23} R_D(U_1^2, U_2^2, U_3^2) + \frac{X_1 Y_3}{U_3} \right) \right\}
\]

\[
+ b_1^{-1} \left(X_1^3 X_2 X_3 - Y_1 Y_2 Y_3 \right).
\]
4. The Two Fundamental Integrals. In this section we shall prove (2.6) and (2.7) for
\([-1,-1,-1,-1]\) and \([1,-1,-1,-3]\), from which the remaining integrals can be ob-
tained by the recurrence relations of Section 5. In order that the first part of the
proof shall apply for future purposes to \([1,-1,-1,-1,-2]\), which is an integral of the
third kind, we do not restrict the number \(n\) of factors in (1.1) to be 4. It will be
important that these three integrals have \(p_1 > -2\) and \(\Sigma p_i = -4\).

In (1.1) we assume \(x > y\) and \(a_i + b_i t > 0\), \(y < t < x\), for all \(i\). In the notation
of Section 2 this implies \(X_i^2 \geq 0\) and \(Y_i^2 \geq 0\) for all \(i\). Temporarily we assume further
that \(-a_i/b_i > x\) and that \(a_i + b_i t > 0\), \(y \leq t \leq -a_i/b_i\), for \(i > 1\). This assumption,
which will later be removed by analytic continuation, means that \(-a_i/b_i\) is the first
singularity encountered to the right of the interval of integration. The first part of
the assumption implies \((a_i + b_i x)/b_i < 0\), whence \(X_i^2 > 0\), \(b_i < 0\), and \(Y_i^2 > 0\),
since \(Y_i^2 = X_i^2 - b_i(x - y)\). The second part of the assumption implies \(a_i +
b_i(-a_i/b_i) > 0\), whence \(d_{1i} > 0\), \(i > 1\).

We can now split (1.1) into two parts, both well defined if \(p_1 > -2\):
\[
\int_a^b \cdots \int_c^d \prod_{i=1}^n \left(a_i + b_i t \right)^{p_i/2} dt
\]
(4.1)

It suffices to consider \(I_y\) because \(I_x\) is the same with \(y\) replaced by \(x\). The interval
of integration is mapped onto the positive real line by a change of integration variable:
\[
\frac{u - y}{Y_i^2(a_i + b_i t)} = Y_i^2 \frac{t - y}{Y_i^2(a_i + b_i t)},
\]
(4.2)

where \(d_{1i} = 0\). If \(\Sigma p_i = -4\) the powers of \(1 - b_i Y_i^2 u\) cancel, and we find
\[
I_y = Y_i^4 \cdot p_1 \int_0^\infty \int_0^\infty \left(Y_i^2 d_{1i} u + Y_i^2 \right)^{p_i/2} du
\]
(4.3)

The integral \(I_x\) is the same with \(Y_i^2/Y_i^2 d_{1i}\) replaced by \(X_i^2/X_i^2 d_{1i}\), and the
difference,
\[
X_i^2/X_i^2 d_{1i} - Y_i^2/Y_i^2 d_{1i} = (x - y)/X_i^2 Y_i^2,
\]
is positive and independent of \(i\). Using the notation
\[
\lambda = (x - y)/X_i^2 Y_i^2, \quad z = Y_i^2/Y_i^2 d_{1i}, \quad z_i + \lambda = X_i^2/X_i^2 d_{1i},
\]
(4.4)

we find from (4.1), (4.3), (1.2), and (1.3) that
\[
[-1,-1,-1,-1] = 2(d_{12}d_{13}d_{14})^{-1/2}
\]
(4.5)

\[
\cdot \left[R_F(z_2, z_3, z_4) - R_F(z_2 + \lambda, z_3 + \lambda, z_4 + \lambda) \right],
\]
\[
[1,-1,-1,-3] = \frac{2}{3}(d_{12}d_{13})^{-1/2}(d_{14})^{-3/2}
\]
(4.6)

\[
\cdot \left[R_D(z_2, z_3, z_4) - R_D(z_2 + \lambda, z_3 + \lambda, z_4 + \lambda) \right].
\]
The addition theorem \([4. (9). (13)]\) for \(R_F\) is

\[
R_F(z_2, z_3, z_4) = R_F(z_2 + \lambda, z_3 + \lambda, z_4 + \lambda) + R_F(z_2 + \mu, z_3 + \mu, z_4 + \mu).
\]

\[z_i + \mu = \lambda^{-2} \left(\left[(z_i + \lambda) z_j z_k \right]^{1/2} + \left[z_j (z_j + \lambda) (z_k + \lambda) \right]^{1/2} \right).
\]

where \(i, j, k\) is any permutation of 2, 3, 4. Thus (4.5) becomes

\[
[-1, -1, -1, -1] = 2(d_{i_2} d_{i_3} d_{i_4})^{-1/2} R_F(z_2 + \mu, z_3 + \mu, z_4 + \mu).
\]

\[
z_i + \mu = \frac{(X_i X_j Y_k + Y_i Y_j X_k)^2}{d_i d_j d_k (x - y)^2} = \frac{U_{i_0}^2}{d_{i_2} d_{i_3} d_{i_4}}.
\]

By the homogeneity property (1.4) we find

\[
[-1, -1, -1, -1] = 2 R_F(U_{i_2}^2, U_{i_3}^2, U_{i_4}^2).
\]

which is the same as (2.6).

This removal of the \(d\)'s from the arguments of \(R_F\) is the critical step. As shown by (1.2), an argument of \(R_F\) must not be negative, and so the functions on the right-hand side of (4.5) require the branch points to be ordered so that \(d_{i_2}, d_{i_3}, \) and \(d_{i_4}\) are positive. To show that (4.10) holds without the assumption that \(-a_i / b_i\) is the first singularity to the right of the interval of integration, we use analytic continuation in \(b_i\) or more conveniently in \(w\). where

\[
w = X_i^2 = a_i + b_i x, \quad b_i = \frac{w - Y_i^2}{x - y},
\]

\[
a_1 = \frac{x Y_1^2 - w}{x - y}, \quad \frac{-a_1}{b_1} = x + \frac{w (x - y)}{Y_1^2 - w}.
\]

We fix \(x, y, Y_i > 0, 1 \leq i \leq n, \) and \(X_i > 0, 2 \leq i \leq n.\) Then \(a_1\) and \(b_1\) are functions of \(w\) and we can make \(-a_i / b_i\) be the first singularity to the right of the interval of integration by choosing \(w\) positive and sufficiently small. For such values of \(w\) we have proved that (4.10) is true. We shall show that both sides of (4.10) are analytic in \(w\) on the complex plane cut along the nonpositive real axis. It follows by the permanence of functional relations that (4.10) holds in the cut plane and in particular for all positive values of \(w\). Therefore it holds for any real value of \(-a_i / b_i\) outside the closed interval of integration. The last statement is immediately evident from the graph of \(a_1 + b_1 t\) as a function of \(t\). since \(a_1 + b_1 y\) has been fixed and \(w = a_1 + b_1 x.\)

To prove analyticity, we recall that an \(R\)-function is analytic when each of its arguments lies in the plane cut along the nonpositive real axis [2. (6.8–6). Theorem (6.8–1)]. Since (2.3) shows that \(U_{ij} = \alpha_{ij} w^{1/2} + \beta_{ij}\), where \(\alpha_{ij}\) and \(\beta_{ij}\) are positive. \(U_{ij}^2\) lies in the cut plane when \(w\) does, and so the right-hand side of (4.10) is analytic in the cut \(w\)-plane. The left side is defined by (1.1), which can be rewritten, when \(\sum r_i = -4.\) as

\[
[p] = (x - y) \left(\prod_{i=1}^n Y_i^{p_i} \right) R_{-1} \left(\frac{-p_1}{2}, \ldots, \frac{-p_n}{2}; \frac{X_1^2}{Y_1^2}, \ldots, \frac{X_n^2}{Y_n^2} \right)
\]
by taking \(s = (x - t)/(t - y) \) as a new variable of integration and using [2, (6.8–6)]. Since \(Y_1^2 \) is positive and \(X_1^2 = w \), the right side of (4.12) and the left side of (4.10) are analytic in the cut \(w \)-plane, and the proof of (2.6) is complete.

A different proof of (2.6) was given in [3], but the present proof is adaptable to (2.7) with only minor changes. The addition theorem for \(R_D \), obtained by putting \(\rho = z \) in [11, (8.11)], is

\[
R_D(z_2, z_3, z_4) = R_D(z_2 + \lambda, z_3 + \lambda, z_4 + \lambda) + R_D(z_2 + \mu, z_3 + \mu, z_4 + \mu) + 3\left[z_4(z_4 + \lambda)(z_4 + \mu) \right]^{-1/2},
\]

(4.13)

where \(\mu \) is the same as in (4.7). Thus (4.6) becomes

\[
[1, -1, -1, -3] = \frac{2}{3} \left(d_{12}d_{13} \right)^{-1/2} \left(d_{14} \right)^{-3/2}
\]

(4.14)

\[
\cdot \left\{ R_D(z_2 + \mu, z_3 + \mu, z_4 + \mu) + 3\left[z_4(z_4 + \lambda)(z_4 + \mu) \right]^{-1/2} \right\}.
\]

Substituting (4.4) and (4.9) and using the homogeneity property (1.4), we find (2.7). The temporary assumption about \(-a_1/b_1\) can again be removed by the permanence of functional relations. In the first term on the right-hand side of (2.7), \(d_{12} \) and \(d_{13} \) are linear functions of \(w = X_1^2 \) by (2.1) and (4.11), and \(R_D \) is analytic in the cut \(w \)-plane by the same reasoning that applied earlier to \(R_F \). The second term also is analytic because \(X_1/U_{14} = w^{1/2}/(\alpha_{14}w^{1/2} + \beta_{14}) \), where \(\alpha_{14} \) and \(\beta_{14} \) are positive. Since the left side of (2.7) is a special case of (4.12), the proof is complete.

5. Recurrence Relations. Let \(e_i \) denote an \(n \)-tuple with 1 in the \(i \)th place and 0’s elsewhere (for example, \([p + 2e_1] = [p_1 + 2, p_2, \ldots, p_n] \)). We shall first list some relations between different integrals, then give their proofs, and finally show how they can be used to obtain all the integrals in the table from the two fundamental integrals (2.6) and (2.7). The most useful relation is

\[
d_{ij}(p) = b_j[p + 2e_i] - b_i[p + 2e_j].
\]

(5.1)

Two others, involving the quantity

\[
A(p) = \prod_{i=1}^n X_i^{p_i} - \prod_{i=1}^n Y_i^{p_i},
\]

(5.2)

are

\[
\sum_{i=1}^n p_i b_i[p - 2e_i] = 2A(p)
\]

(5.3)

and

\[
(p_1 + \cdots + p_n + 2)b_i[p] = \sum_{j=1}^n p_jd_{ij}[p - 2e_j] + 2A(p + 2e_i).
\]

(5.4)

The latter, which can be used to raise the value of \(\sum p_i \), contains \(n \) integrals since \(d_{ii} = 0 \).
Recurrence relations for a single \(p_i \) depend on the value of \(n \). For \(n = 3 \) and \(i, j, k \) any permutation of 1, 2, 3, we have
\[
(p_1 + p_2 + p_3 + 4) b_j b_k [p + 2e_i] \\
+ \left\{ \left(p_i + p_j + 2 \right) b_j d_{k_1} + \left(p_i + p_k + 2 \right) b_k d_{j_1} \right\} [p] \\
+ p_i d_{j_1} d_{k_1} [p - 2e_i] = 2 b_i A (p + 2e_j + 2e_k).
\]
(5.5)

The analogous relation for \(n = 4 \) and \(i, j, k, m \) a permutation of 1, 2, 3, 4 is
\[
(p_1 + p_2 + p_3 + p_4 + 6) b_j b_k b_m [p + 4e_i] \\
+ \sum (p_i + p_j + p_k + 4) b_j b_k d_{m_1} [p + 2e_i] \\
+ \sum (p_i + p_j + 2) b_j d_{k_1} d_{m_1} [p] + p_i d_{j_1} d_{k_1} d_{m_1} [p - 2e_i] \\
= 2 b_i^2 A (p + 2e_j + 2e_k + 2e_m),
\]
where \(\Sigma \) denotes summation over cyclic permutations of \(j, k, m \). This relation is especially useful if \(\Sigma p_i = -6 \), because the first term vanishes.

Equation (5.1) follows at once from the definition of \([p]\) and the identity
\[
d_{ij} = b_j (a_i + b_it) - b_i (a_j + b_it).
\]
(5.7)

To prove (5.3) we integrate both sides of
\[
2 \frac{d}{dt} \prod_{i=1}^{n} (a_i + b_it)^{p_i/2} = \sum_{i=1}^{n} p_i b_i (a_i + b_it)^{-1} \prod_{j=1}^{n} (a_j + b_j t)^{p_j/2}
\]
with respect to \(t \) over the interval \([y, x]\).

If \(p \) is replaced by \(p + 2e_i \), (5.3) becomes
\[
(p + 2) b_j [p] + \sum_{j \neq i}^{n} p_j b_j [p + 2e_i - 2e_j] = 2 A (p + 2e_i),
\]
(5.9)

and if \(p \) is replaced by \(p - 2e_i \), (5.1) becomes
\[
b_j [p + 2e_i - 2e_j] = b_i [p] - d_{ji} [p - 2e_j].
\]
(5.10)

Substitution of (5.10) in (5.9) yields (5.4). To prove (5.5) we use (5.7) twice to write \(b_i^2 (a_j + b_it)(a_k + b_k t) \) as a quadratic polynomial in \(a_i + b_it \), multiply by \(\prod (a_r + b_r t)^{p_r/2} \), and integrate to get
\[
b_i^2 [p + 2e_j + 2e_k] = b_j b_k [p + 4e_i] + (b_j d_{k_1} + b_k d_{j_1}) [p + 2e_i] \\
+ d_{j_1} d_{k_1} [p].
\]
(5.11)

Next we replace \(p \) by \(p + 2e_j + 2e_k \) in (5.3) with \(n = 3 \) and find
\[
p_j b_j [p - 2e_i + 2e_j + 2e_k] + (p_j + 2) b_j [p + 2e_k] \\
+ (p_k + 2) b_k [p + 2e_j] = 2 A (p + 2e_j + 2e_k).
\]
(5.12)

In the first term we substitute (5.11) with \(p \) replaced by \(p - 2e_i \); in the second and third terms we use (5.1) with or without replacement of \(j \) by \(k \). The result is (5.5), and (5.6) has a similar proof starting from \(b_i^3 (a_j + b_j t)(a_k + b_k t)(a_m + b_m t) \) as a cubic polynomial in \(a_i + b_it \).

The following special cases of (5.1) show how to obtain (2.8), (2.9), (2.10), and (2.11) from (2.6) and (2.7):
\[
d_{14} [-1, -1, -1, -3] = b_4 [1, -1, -1, -3] - b_1 [-1, -1, -1, -1],
\]
(5.13)
(5.14) \(b_4[-1, -1, -1, -3] = d_{44}[-1, -1, -1, -3] + b_3[-1, -1, -1, -3] \),
(5.15) \(d_{44}[-1, -1, -3, -3] = b_4[-1, -1, -3, -3] - b_3[-1, -1, -3, -3] \),
(5.16) \(b_3[1, -1, -3, -3] = d_{13}[1, -1, -3, -3] + b_1[-1, -1, -1, -3] \),
(5.17) \(b_3[1, 1, -3, -3] = d_{23}[1, -1, -3, -3] + b_2[1, -1, -1, -3] \).

We have omitted \(p_5 = 0 \) in the two integrals on the right-hand side of (5.14). In (5.15), \([-1, -1, -3, -3]\) is found by interchanging the subscripts 3 and 4 in formula (2.8) specialized to \([-1, -1, -3, -3]\). Letting \([p] = [-1, -1, -1, -3]\) and \(i = 4\) in (5.6), we get \([-1, -1, -1, -5]\) from \([-1, -1, -1, -3]\) and \([-1, -1, -1, -1]\), since the first term of (5.6) is 0. Equations (2.12) and (2.13) then follow from two more special cases of (5.1):

(5.18) \(b_4[1, -1, -1, -5] = d_{44}[-1, -1, -1, -5] + b_1[-1, -1, -1, -3] \),
(5.19) \(b_4[1, 1, -1, -5] = d_{24}[1, -1, -1, -5] + b_2[1, -1, -1, -3] \).

The formulas resulting from this procedure can sometimes be simplified with the help of various identities:

(5.20) \(b_iX_i^2 - b_jX_j^2 = b_iY_i^2 - b_jY_j^2 = d_{ji} \),
(5.21) \(X_i^2Y_j^2 - Y_i^2X_j^2 = (x - y)d_{ji} \),
(5.22) \(\sum a_id_{jk} = \sum b_id_{jk} = \sum d_{im}d_{jk} = 0 \),
(5.23) \(\sum X_i^2d_{jk} = \sum Y_i^2d_{jk} = 0 \),
(5.24) \(\sum d_{ij}U_{ij}X_kY_k = 0 \),

where \(\Sigma \) denotes summation over cyclic permutations of \(i, j, k \). These identities are obtained from definitions (2.1) to (2.3). Equation (5.22) is used to prove (5.23) and (5.23) to prove (5.24). Since \(R_D \), unlike \(R_F \), is symmetric in only its first two arguments, another useful relation is

\[
d_{1i}d_{ki}R_D(U^2_{ij}, U^2_{ik}, U^2_{ij}) = d_{1k}d_{ij}R_D(U^2_{ij}, U^2_{ik}, U^2_{ij})
+ 3R_F(U^2_{12}, U^2_{13}, U^2_{14}) - \frac{3U_{1i}U_{1k}}{U_{1j}U_{1k}},
\]

where \(i, j, k \) is any permutation of 2, 3, 4. This can be proved by using [5, (4.14)] to express both sides in terms of the symmetric functions \(R_G \) and \(R_F \) and simplifying with the help of (2.4).

The four cubic cases in Section 3 can be obtained from (5.1) and (5.4) as follows:

(5.26) \(b_3[3, -1, -3] = d_{12}[1, -1, -3] + b_1[1, -1, -1] \),
(5.27) \(b_2[3, -1, -1] = d_{12}[1, -1, -1] + b_1[1, 1, -1] \),
(5.28) \(d_{12}[-3, -3, -3] = b_2[-1, -3, -3] - b_1[-3, -1, -3] \),
(5.29) \(5b_1[1, 1, 1] = d_{21}[1, -1, 1] + d_{31}[1, 1, -1] + 2A(3, 1, 1) \).

Aside from permutation of indices, each integral on the right-hand side of these equations is among the 13 cubic cases listed in the first paragraph of Section 3. Equation (5.24) is replaced by two identities,

(5.30) \(\sum d_{ij}U_{ij}X_kY_k = 0 \),
(5.31) \(b_iU_iX_j - b_iU_iX_j = d_{ji}U_{ij} \).
and (5.25) is replaced by

\[b_j d_k R_D(U^2_i, U^2_j, U^2_k) = b_k d_i R_D(U^2_i, U^2_j, U^2_k) \]

\[+ 3R_f(U^2_i, U^2_j, U^2_k) - \frac{3U_i}{U_j U_k}. \]

(5.32)

In these three equations \(i, j, k \) is any permutation of 1, 2, 3, and \(\Sigma \) denotes summation over cyclic permutations of \(i, j, k \). Equation (5.23) is used to prove (5.30), and (5.20) to prove (5.31). Equation (5.32) is proved in the same way as (5.25) except that (3.2) is used in place of (2.4).

Department of Mathematics
Iowa State University
Ames, Iowa 50011

Supplement to
A Table of Elliptic Integrals of the Second Kind

By B. C. Carlson

This supplement contains Fortran routines for the standard functions \(R_p(x,y,z) \) and \(R_g(x,y,z) \), followed by two examples of their use in computing elliptic integrals.

```fortran
DOUBLE PRECISION FUNCTION RF(X,Y,Z,ERRTOL,IERR)

C
C THIS FUNCTION SUBROUTINE COMPUTES THE INCOMPLETE ELLIPTIC
C INTEGRAL OF THE FIRST KIND,
C RF(X,Y,Z) = INTEGRAL FROM ZERO TO INFINITY OF
C
C -1/2     -1/2     -1/2
C (1/2MT+X)    (T+Y)    (T+Z)    DT,
C
C WHERE X, Y, AND Z ARE NONNEGATIVE AND AT MOST ONE OF THEM
C IS ZERO. IF ONE OF THEM IS ZERO, THE INTEGRAL IS COMPLETE.
C THE DUPLICATION THEOREM IS ITERATED UNTIL THE VARIABLES ARE
C NEARLY EQUAL, AND THE FUNCTION IS THEN EXPANDED IN TAYLOR
C SERIES TO FIFTH ORDER.
C REFERENCES: B. C. CARLSON AND E. M. NOTIS, ALGORITHMS FOR
C INCOMPLETE ELLIPTIC INTEGRALS. ACM TRANSACTIONS ON MATHEMA-
C TICAL SOFTWARE, 7 (1981), 398-403; B. C. CARLSON, COMPUTING
C ELLIPTIC INTEGRALS BY DUPLICATION, NUMER. MATH., 33 (1979),
C 1-16.
C AUTHORS: B. C. CARLSON AND ELAINE M. NOTIS, AMES LABORATORY-
C DOE, IOWA STATE UNIVERSITY, AMES, IA 50011, AND R. L. PEXTON,
C LAWRENCE LIVERMORE NATIONAL LABORATORY, LIVERMORE, CA 94550.
C
C CHECK VALUE: RF(0,1,2) = 1.31102 87771 46059 90523 24198
C CHECK BY ADDITION THEOREM: RF(X,X+Z,X+W) + RF ( Y,Y+Z,Y+W )
C = RF(0,Z,W), WHERE X,Y,Z,W ARE POSITIVE AND X*Y = Z*W.

INTEGER IERR,PRINTR

DOUBLE PRECISION Cl , C2 , C3,EPSLON,ERRTOL,LAMDA
DOUBLE PRECISION LOLIM,MU,S,UPLIM,X,XN,XNDEV,XNROOT
DOUBLE PRECISION Y,YN,YNDEV,YNROOT,Z,ZN,ZNDEV,ZNROOT

DOUBLE PRECISION FUNCTION RF( X,Y,Z,ERRTOL,IERR)

C INTRINSIC FUNCTIONS USED: DABS,DMAX1,DMIN1,DSQRT
C
C PRINTR IS THE UNIT NUMBER OF THE PRINTER.

DATA PRINTR/6/

©1987 American Mathematical Society
0025-5718/87 $1.00 + $.25 per page

S13
LOLIM determines the lower limit and UPLIM the upper limit of the range of admissible values of \(X, Y,\) and \(Z\) for which the computation will proceed without underflow or overflow. LOLIM is not less than the machine minimum divided by 5. UPLIM is not greater than the machine maximum divided by 5.

**Acceptable Values for:**
- LOLIM: 3.0D-78 to 1.0D+75
- UPLIM: 1.0D-307
- CDC 6000/7000 series: 1.0D-292 to 1.0D+321
- UNIVAC 1100 series: 1.0D-307
- CRAY 11 series: 2.3D-2466 to 1.0D+2465
- VAX 11 series: 1.5D-38 to 3.0D-37
- IBM PC: 1.5D-38 to 3.0D-37

**Warning:** If this program is converted to single precision, the values for the UNIVAC 1100 series should be changed to LOLIM = 1.0E-37 and UPLIM = 1.0E-37 because the machine extrema change with the precision.

**Data:**

LOLIM/1.5D-38, UPLIM/3.0D+37/

**On Input:**

\(X, Y,\) and \(Z\) are the variables in the integral \(RF(X,Y,Z)\).

**Ertol is chosen to determine the accuracy of the computed approximation to the integral. Truncation of a Taylor series after terms of fifth order introduces a relative error less than the amount shown in the second column of the following table for each value of ERTOL in the first column. In addition to the truncation error there will be roundoff error, but in practice the total error from both sources is usually less than the amount given in the table. Since the truncation error is less than \((ERTOL)^2/(4*1-ERTOL))\), decreasing ERTOL by a factor of 10 yields six more decimal digits of accuracy at the expense of one or two more iterations of the duplication theorem.

**Sample Choices:**

<table>
<thead>
<tr>
<th>ERTOL</th>
<th>Relative Truncation (Error Less Than)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0D-3</td>
<td>3.0D-19</td>
</tr>
<tr>
<td>3.0D-3</td>
<td>2.0D-16</td>
</tr>
<tr>
<td>1.0D-2</td>
<td>3.0D-13</td>
</tr>
<tr>
<td>3.0D-2</td>
<td>2.0D-10</td>
</tr>
<tr>
<td>1.0D-1</td>
<td>3.0D-7</td>
</tr>
</tbody>
</table>

**On Output:**

\(X, Y,\) and \(Z\) are unaltered.

IERR is the return error code:
- IERR = 0 for normal completion of the subroutine.
- IERR = 1 for abnormal termination.
DOUBLE PRECISION FUNCTION RD(X,Y,Z,ERRTOL,IERR)

THIS FUNCTION SUBROUTINE COMPUTES AN INCOMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND,
\[ RD(X,Y,Z) = \int_{0}^{\infty} \frac{1}{\sqrt{(t+X)(t+Y)(t+Z)}} dt, \]
where \(X\) and \(Y\) are nonnegative, \(X + Y\) is positive, and \(Z\) is positive. If \(X\) or \(Y\) is zero, the integral is complete.

The duplication theorem is iterated until the variables are nearly equal, and the function is then expanded in Taylor series to fifth order.


AUTHORS: B. C. CARLSON AND ELAINE M. NOTIS,AMES LABORATORY-
DOE, IOWA STATE UNIVERSITY, AMES, IA 50011, AND R. L. PEIXTON,
LAWRENCE LIVERMORE NATIONAL LABORATORY, LIVERMORE, CA 94550.

CHECK VALUE: \(RD(0,2,1) = 1.79721 03521 03388 31115 96837\)
CHECK: \(RD(X,Y,Z) + RD(Y,X,Z) + RD(Z,X,Y) = 3/\text{DSQRT}(X*Y*Z),\)
where \(X, Y,\) and \(Z\) are positive.

INTEGER IERR,PRINTH
DOUBLE PRECISION C1,C2,C3,C4,CA,EB,EC,ED,EF,EPSON,ERRTOL,LANDA
DOUBLE PRECISION LOLLIM,MU,PONER4,SIGMA,S1,S2,DUPLIM,XN,XNDEV
DOUBLE PRECISION XNROOT,YN,YNDEV,XNDEV,XNROOT

INTRINSIC FUNCTIONS USED: DBLE,MAX1,MIN1,DSQRT

PRINTH IS THE UNIT NUMBER OF THE PRINTER.

DATA PRINTH /6/

LOLLIM DETERMINES THE LOWER LIMIT AND UPLIM THE UPPER LIMIT OF THE RANGE OF ADMISSIBLE VALUES OF \(X, Y,\) AND \(Z\) FOR WHICH THE COMPUTATION WILL PROCEED WITHOUT UNDERFLOW OR OVERFLOW.
LOLLIM IS NOT LESS THAN \((0.1 \times \text{ERRTOL} \times \text{MACHINE MINIMUM})^{2/3}\), WHERE \text{ERRTOL} IS DESCRIBED BELOW.
IN THE FOLLOWING TABLE IT IS ASSUMED THAT \text{ERRTOL} WILL NEVER BE CHOSEN SMALLER THAN \(1.D-5\).

ACCEPTABLE VALUES FOR: LOLLIM UPLIM
IBM 360/370 SERIES : 6.0D-51 1.0D+48
CDC 6600/7000 SERIES : 5.0D-21 2.0D+191
UNIVAC 1100 SERIES : 1.0D-205 2.0D+201
CRAY : 3.0D-164 1.6D+164
VAX 11 SERIES : 1.0D-25 4.5D+21
IBM PC : 1.0D-25 4.5D+21

WARNING: IF THIS PROGRAM IS CONVERTED TO SINGLE PRECISION,
THE VALUES FOR THE UNIVAC 1100 SERIES SHOULD BE CHANGED TO
LOLLIM = 1.E-25 AND UPLIM = 2.E+21 BECAUSE THE MACHINE
EXTREMA CHANGE WITH THE PRECISION.

DATA LOLLIM/1.0D-25/, UPLIM/4.5D+21/

ON INPUT:
\(X, Y,\) AND \(Z\) ARE THE VARIABLES IN THE INTEGRAL \(RD(X,Y,Z)\).

ERRTOL IS CHOSEN TO DETERMINE THE ACCURACY OF THE COMPUTED APPROXIMATION TO THE INTEGRAL. TRUNCATION OF A TAYLOR SERIES AFTER TERMS OF FIFTH ORDER INTRODUCES A RELATIVE ERROR LESS THAN THE AMOUNT SHOWN IN THE SECOND COLUMN OF THE FOLLOWING TABLE FOR EACH VALUE OF \text{ERRTOL} IN THE FIRST COLUMN. IN ADDITION TO THE TRUNCATION ERROR THERE WILL BE ROUNDOFF ERROR, BUT IN PRACTICE THE TOTAL ERROR FROM BOTH SOURCES IS USUALLY LESS THAN THE AMOUNT GIVEN IN THE TABLE. SINCE THE TRUNCATION ERROR IS LESS THAN \(3 \times \text{ERRTOL}^{2/3}\), DECREASING \text{ERRTOL} BY A FACTOR OF 10 YIELDS SIX MORE DECIMAL DIGITS OF ACCURACY AT THE EXPENSE OF ONE OR TWO MORE ITERATIONS OF THE DUPLICATION THEOREM.

SAMPLE CHOICES: \text{ERRTOL} \hspace{1cm} \text{RELATIVE TRUNCATION ERROR LESS THAN}
1.0D-3 \hspace{1cm} 4.0D-18
3.0D-3 \hspace{1cm} 3.0D-15
1.0D-2 \hspace{1cm} 4.0D-12
3.0D-2 \hspace{1cm} 3.0D-9
1.0D-1 \hspace{1cm} 4.0D-6

ON OUTPUT:
\(X, Y,\) AND \text{ERRTOL} ARE UNALTEDURED.

LOLLIM IS THE RETURN ERROR CODE:
IERR = 0 FOR NORMAL COMPLETION OF THE SUBROUTINE,
IERR = 1 FOR ABNORMAL TERMINATION.

S15
WARNING: CHANGES IN THE PROGRAM MAY IMPROVE SPEED AT THE
EXPENSE OF ROBUSTNESS.

IF (DMINI(X,Y) .LT. 0.0D0) GO TO 100
IF (DMINI(X+Y,2) .LT. 0.0D0) GO TO 100
IF (DMAXI(X,Y,2) .LE. 0.0D0) GO TO 112

100 WRITE(PRINTR,104)
104 FORMAT(1H4,H4,E24.16,E24.16,E24.16,E24.16,E24.16)
IERR = 1
GO TO 124

112 IERR = 0
XN = X
YN = Y
Z = Z
SIGMA = 0.0D0
POWERO = 1.0D0

116 MU = (XN + YN + 3.0D0 * ZN) * 0.2D0
YNDEV = (MU - YN) / MU
ZDEV = (MU - ZN) / MU
EPSILON = DMAX1(ABS(YNDEV),ABS(ZDEV))
IF (EPSILON .LT. ERRTOL) GO TO 120
XNROOT = D SQRT(XN)
YNROOT = D SQRT(YN)
ZROOT = D SQRT(ZN)
LAMDA = XNROOT * (YNROOT + ZROOT) + YNROOT * ZROOT
SIGMA = SIGMA + POWERO * (ZROOT * (Z + LAMDA))
POWERO = POWERO * 0.25D0
XN = (XN + LAMDA) * 0.25D0
YN = (YN + LAMDA) * 0.25D0
Z = (ZN + LAMDA) * 0.25D0
GO TO 116

120 C1 = 3.0D0 / 14.0D0
C2 = 1.0D0 / 6.0D0
C3 = 9.0D0 / 22.0D0
C4 = 3.0D0 / 26.0D0
EA = XNDEV * YNDEV
EB = ZDEV * 2NDEV
EC = EA - EB
ED = EA * 6.0D0 * EB
EF = ED + EC
E = C1 * 0.25D0 * C3 * ED + 1.5D0 * C4 * Z2 + 2NDEV + EF
S2 = 2NDEV * (C2 + EF + 2NDEV * (C3 + EC + ZDEV + C4 + EA))
RD = 3.0D0 * SIGMA + POWERO * (1.0D0 + S1 + S2) / (MU * DSQRT(MU))

Example 1. The arc of Bernoulli's lemniscate \( r^2 = \cos(2\theta) \) between
the points \((r,0)\) and \((\rho,\phi)\), where \(0 \leq \theta \leq n/4\) and \(0 \leq \rho \leq r \leq 1\), has
length \([2,\text{Ex.8.3-7}]\)

\[
\begin{align*}
S_1 &= \int_{\rho}^{r} \left(1-u^4\right)^{-1/2} du.
\end{align*}
\]

Putting \( u^2 = t \) and using (2.6) and (2.1)-(2.4), we find

\[
\begin{align*}
S_1 &= \frac{1}{2} \int \left[t(1+t)(1-t)\right]^{-1/2} dt = \int \left[t(1+t)(1-t)\right]^{-1/2} dt
\end{align*}
\]

We have chosen \( a_1+b_1t = t, a_2+b_2t = 1-t, a_3+b_3t = 1-t, \) and \( a_4+b_4t = 1\).

If \( 0 < \rho < \frac{1}{2} \) and \( r = 1/\rho \), then \( U_{14} = 7 \) and
\( \rho = 1/3 \). If \( r = 1/2 \), then \( U_{14} = 7 \) and
\( \rho = 1/3 \). If \( r = 1/2 \), then \( U_{14} = 7 \) and

\[
S_1 = \left(1-u^4\right)^{-1/2} du = R_F(48, 49, 50) = 0.14286 30937 9176....
\]

Here we have used the symmetry of \( R_F \) and the first Fortran code in this
Supplement.

If \( s = 0 \), \( U_{14} \) reduces to \( 1/\rho \) and the arc length to

\[
\begin{align*}
S_1 &= \int \left(1-u^4\right)^{-1/2} du = R_F(r^2-1, r^2, r^2+1),
\end{align*}
\]

\( 0 \)
in agreement with [2, Ex. 8.3-7]. The case \( r = 1 \), representing the length of a quadrant of the lemniscate \([8][10]\), is \( R_F(0,1,2) \), with numerical value given to 25D in the comments of the Fortran code.

A check on (5.3) is provided by splitting the integral into two parts,

\[
(5.5) \quad \varepsilon_2 = \int_0^{1/\sqrt{2}} (1-u^4)^{-1/2} \, du = R_F(1,2,3) = 0.72694 \, 59354 \, 6891\ldots, \\
(5.6) \quad \varepsilon_3 = \int_{1/\sqrt{3}}^{1} (1-u^4)^{-1/2} \, du = R_F(2,3,4) = 0.58408 \, 28416 \, 7715\ldots.
\]

We see that \( \varepsilon_1 = \varepsilon_2 - \varepsilon_3 \) to 14D. The relation

\[
(5.7) \quad R_F(1,2,3) - R_F(2,3,4) = R_F(48,49,50)
\]

is a special case of the addition theorem (4.7).

**Example 2.** With the same notation and procedure as in Example 1, we find from (2.7) that

\[
(5.8) \quad I = \int_0^r u^2(1-u^4)^{-1/2} \, du = \frac{1}{3} R_D(U_2^4,1,1,1) + \varepsilon_2 / U_12,
\]

where \( U_14 \) is given in (5.2). A special case is

\[
(5.9) \quad I_1 = \int_{1/\sqrt{2}}^{1/\sqrt{3}} u^2(1-u^4)^{-1/2} \, du = \frac{1}{3} R_D(48,50,49) + 1/7/6 \approx 0.00291 \, 57121 \, 46567 \, 96\ldots + 0.05832 \, 11843 \, 51980 \, 43\ldots
\]

\[
= 0.05929 \, 30884 \, 00836 \, 4\ldots,
\]

where we have used the second Fortran code in this Supplement.

If \( \rho = 0 \), (5.8) reduces to

\[
(5.10) \quad R_D(r^{-2} - 1, r^{-2} + 1, r^{-2} + 2),
\]

and the case \( r = 1 \) is the second lemniscate constant \([8][10]\),

\[
(5.11) \quad \int_0^1 u^2(1-u^4)^{-1/2} \, du = \frac{1}{3} R_D(0,2,1) = 0.59907 \, 01173 \, 67796\ldots.
\]

The value of \( R_D(0,2,1) \) is given to 25D in the comments of the Fortran code, and a well-known relation between the two lemniscate constants [10, Theorem 2] takes the form \( R_F(0,1,2) R_D(0,2,1) = 3\pi/4 \). A check on (5.9) is provided by splitting the integral into two parts,

\[
(5.12) \quad I_2 = \int_0^{1/\sqrt{2}} u^2(1-u^4)^{-1/2} \, du = \frac{1}{3} R_D(1,3,2) = 0.12505 \, 74576 \, 52385\ldots,
\]

\[
(5.13) \quad I_3 = \int_{1/\sqrt{3}}^1 u^2(1-u^4)^{-1/2} \, du = \frac{1}{3} R_D(2,4,3) = 0.06576 \, 43692 \, 51548\ldots.
\]

We see that \( I_1 = I_2 - I_3 \) to 135. The relation

\[
(5.14) \quad R_D(1,3,2) - R_D(2,4,3) = R_D(48,50,49) + \sqrt{6}/14
\]

is a special case of the addition theorem (4.13).