Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Calculation of the class numbers of imaginary cyclic quartic fields

Authors: Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams and N. M. Holtz
Journal: Math. Comp. 49 (1987), 615-620
MSC: Primary 11Y40; Secondary 11R16, 11R29
MathSciNet review: 906194
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Any imaginary cyclic quartic field can be expressed uniquely in the form $ K = Q(\sqrt {A(D + B\sqrt D )} )$, where A is squarefree, odd and negative, $ D = {B^2} + {C^2}$ is squarefree, $ B > 0,C > 0$, and $ (A,D) = 1$. Explicit formulae for the discriminant and conductor of K are given in terms of A, B, C, D. The calculation of tables of the class numbers $ h(K)$ of such fields K is described.

References [Enhancements On Off] (What's this?)

  • [1] E. D. Bolker, Elementary Number Theory, Benjamin, New York, 1970. MR 0252310 (40:5531)
  • [2] Harvey Cohn, "A computation of some bi-quadratic class numbers," MTAC, v. 12, 1958, pp. 213-217. MR 0100972 (20:7397)
  • [3] M.-N. Gras, Table Numérique du Nombre de Classes et des Unités des Extensions Cycliques Réelles de Degré 4 de Q, Publ. Math. Univ. Besançon, 1977/78, fasc. 2, 53 pp.
  • [4] K. Hardy, R. H. Hudson, D. Richman, K. S. Williams & N. M. Holtz, Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series, No. 7, July 1986, 201 pp. MR 906194 (88m:11112)
  • [5] R. H. Hudson & K. S. Williams, A Class Number Formula for Certain Quartic Fields, Carleton Mathematical Series No. 174, February 1981, 25 pp.
  • [6] B. Oriat, Groupe des Classes des Corps Quadratiques Réels $ Q(\sqrt d ),d < 10000$, Faculté des Sciences de Besançon, Besançon, France, 53 pp.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R16, 11R29

Retrieve articles in all journals with MSC: 11Y40, 11R16, 11R29

Additional Information

Keywords: Imaginary cyclic quartic fields, class number, discriminant
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society