A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems

Authors:
James H. Bramble and Joseph E. Pasciak

Journal:
Math. Comp. **50** (1988), 1-17

MSC:
Primary 65N30; Secondary 65F10

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917816-8

Corrigendum:
Math. Comp. **51** (1988), 387-388.

MathSciNet review:
917816

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides a preconditioned iterative technique for the solution of saddle point problems. These problems typically arise in the numerical approximation of partial differential equations by Lagrange multiplier techniques and/or mixed methods. The saddle point problem is reformulated as a symmetric positive definite system, which is then solved by conjugate gradient iteration. Applications to the equations of elasticity and Stokes are discussed and the results of numerical experiments are given.

**[1]**A. K. Aziz & I. Babuška, "Survey lectures on the mathematical foundations of the finite element method, Part I," in*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A.K. Aziz, ed.), Academic Press, New York, 1972, pp. 1-362. MR**0421106 (54:9111)****[2]**I. Babuška, "The finite element method with Lagrangian multipliers,"*Numer. Math.*, v. 20, 1973, pp. 179-192. MR**0359352 (50:11806)****[3]**J. H. Bramble,*Iterative Methods for Solving Finite Element or Finite Difference Equations for Elliptic Problems*, Lecture Notes. (Unpublished.)**[4]**J. H. Bramble, "The Lagrange multiplier method for Dirichlet's problem,"*Math. Comp.*, v. 37, 1981, pp. 1-12. MR**616356 (83h:65119)****[5]**J. H. Bramble & J. E. Pasciak, "A boundary parametric approximation to the linearized scalar potential magnetostatic field problem,"*Appl. Numer. Math.*, v. 1, 1985, pp. 493-514. MR**814774 (87b:78014)****[6]**J. H. Bramble, J. E. Pasciak & A. H. Schatz, "An iterative method for elliptic problems on regions partitioned into substructures,"*Math. Comp.*, v. 46, 1986, pp. 361-369. MR**829613 (88a:65123)****[7]**J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring. I,"*Math. Comp.*, v. 47, 1986, pp. 103-134. MR**842125 (87m:65174)****[8]**J. H. Bramble, J. E. Pasciak & A. H. Schatz, "The construction of preconditioners for elliptic problems by substructuring. II,"*Math. Comp.*, v. 49, 1987, pp. 1-16. MR**890250 (88j:65248)****[9]**F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers,"*RAIRO*, 1974, pp. 129-151. MR**0365287 (51:1540)****[10]**R. Chandra,*Conjugate Gradient Methods for Partial Differential Equations*, Yale Univ., Dept. of Comp. Sci., Rep. No. 129, 1978.**[11]**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems*, North-Holland, New York, 1978. MR**0520174 (58:25001)****[12]**S. C. Eisenstat, M. C. Gursky, M. H. Schultz & A. H. Sherman, "Yale sparse matrix package, I. The symmetric codes,"*Internat. J. Numer. Methods Engrg.*, v. 18, 1982, pp. 1145-1151.**[13]**R. S. Falk, "An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations,"*Math. Comp.*, v. 30, 1976, pp. 241-269. MR**0403260 (53:7072)****[14]**R. S. Falk & J. E. Osborn, "Error estimates for mixed methods,"*RAIRO Numer. Anal.*, v. 14, 1980, pp. 249-277. MR**592753 (82j:65076)****[15]**A. George & J. W. Liu,*Computer Solution of Large Sparse Positive Definite Systems*, Prentice-Hall, Englewood Cliffs, N. J., 1981. MR**646786 (84c:65005)****[16]**V. Girault & P. A. Raviart,*Finite Element Approximation of the Navier-Stokes Equations*, Lecture Notes in Math., vol. 749, Springer-Verlag, New York, 1981. MR**548867 (83b:65122)****[17]**C. Johnson & J. Pitkäranta, "Analysis of some mixed finite element methods related to reduced integration,"*Math. Comp.*, v. 38, 1982, pp. 375-400. MR**645657 (83d:65287)****[18]**J. C. Nedelec, "Elements finis mixtes incompressibles pour l'equation de Stokes dans ,"*Numer. Math.*, v. 39, 1982, pp. 97-112. MR**664539 (83g:65111)****[19]**W. M. Patterson, 3Rd,*Iterative Methods for the Solution of a Linear Operator Equation in Hilbert Space -- A Survey*, Lecture Notes in Math., vol. 394, Springer-Verlag, New York, 1974. MR**0438701 (55:11609)****[20]**P. A. Raviart & J. M. Thomas, "A mixed finite element method for 2-nd order elliptic problems," in*Mathematical Aspects of Finite Element Methods*(I. Galligani and E. Magenes, eds.), Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977, pp. 292-315. MR**0483555 (58:3547)****[21]**L. R. Scott & M. Vogelius,*Conforming Finite Element Methods for Incompressible and Nearly Incompressible Continua*, Inst, for Phys. Sci. and Tech., Univ. of Maryland, Tech. Rep. BN-1018, 1984. MR**818790 (87h:65202)****[22]**P. N. Swarztrauber, "The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle,"*SIAM Rev.*, v. 19, 1977, pp. 490-501. MR**0438732 (55:11639)****[23]**R. Temam,*Navier-Stokes Equations*, North-Holland, New York, 1977. MR**0609732 (58:29439)****[24]**J. Westlake,*A Handbook of Numerical Matrix Inversion and Solution of Linear Equations*, Wiley, New York, 1968. MR**0221742 (36:4794)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65F10

Retrieve articles in all journals with MSC: 65N30, 65F10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917816-8

Article copyright:
© Copyright 1988
American Mathematical Society