High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws

Author:
J.-P. Vila

Journal:
Math. Comp. **50** (1988), 53-73

MSC:
Primary 65M10; Secondary 35L65

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917818-1

MathSciNet review:
917818

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A systematic procedure for constructing explicit, quasi second-order approximations to strictly hyperbolic systems of conservation laws is presented. These new schemes are obtained by correcting first-order schemes. We prove that limit solutions satisfy the entropy inequality. In the scalar case, we prove convergence to the unique entropy-satisfying solution if the initial scheme is Total Variation Decreasing (i.e., TVD) and consistent with the entropy condition. Finally, we slightly modify Harten's high-order schemes such that they obey the previous conditions and thus converge towards the "entropy" solution.

**[1]**D. L. Book, J. P. Boris & K. Hain, "Flux corrected transport. II,"*J. Comput. Phys.*, v. 18, 1975, pp. 248-283.**[2]**R. J. DiPerna, "Uniqueness of solutions to hyperbolic conservation laws,"*Indiana Univ. Math. J.*, v. 28, 1979, pp. 137-187. MR**523630 (80i:35119)****[3]**A. Harten, "High resolution schemes for hyperbolic conservation laws,"*J. Comput. Phys.*, v. 49, 1983, pp. 357-393. MR**701178 (84g:65115)****[4]**A. Harten & P. D. Lax, "A random choice finite difference scheme for hyperbolic conservation laws,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 289-315. MR**612144 (83b:65090)****[5]**A. Harten, P. D. Lax & B. Van-Leer,*Upstream Differencing and Godunov Type Schemes for Hyperbolic Conservation Laws*, ICASE, 82-5.**[6]**A. Harten, J. M. Hyman & P. D. Lax, "On finite difference approximations and entropy condition for shocks,"*Comm. Pure. Appl. Math.*, v. 29, 1976, pp. 297-322. MR**0413526 (54:1640)****[7]**P. D. Lax, "Shock waves and entropy," in*Contributions to Nonlinear Functional Analysis*(E. H. Zarantonello, ed.), Academic Press, New York, 1971, pp. 603-634. MR**0393870 (52:14677)****[8]**A. Y. Le Roux, "Numerical stability for some equations of gas dynamics,"*Math. Comp.*, v. 37, 1981, pp. 307-320. MR**628697 (82m:76044)****[9]**A. Y. Le Roux & P. Quesseveur, "Convergence of an antidiffusion Lagrange-Euler scheme for quasilinear equations,"*SIAM J. Numer. Anal.*, v. 21, 1984, pp. 985-994. MR**760627 (85m:65092)****[10]**A. Majda & S. Osher, "A systematic approach for correcting nonlinear instabilities,"*Numer. Math.*, v. 30, 1978, pp. 429-452. MR**502526 (80g:65101)****[11]**S. Osher & S. Chakravarthy,*High Resolution Schemes and the Entropy Condition*, ICASE 83-49.**[12]**E. Tadmor,*Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes*, ICASE 83-20.**[13]**E. Tadmor, "The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme,"*Math. Comp.*, v. 43, 1984, pp. 353-368. MR**758188 (86g:65162)****[14]**J. P. Vila, "Simplified Godunov schemes for systems of conservation laws,"*SIAM J. Numer. Anal.*, v. 23, 1986, pp. 1173-1192. MR**865949 (88d:65131)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L65

Retrieve articles in all journals with MSC: 65M10, 35L65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917818-1

Article copyright:
© Copyright 1988
American Mathematical Society