High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws

Author:
J.-P. Vila

Journal:
Math. Comp. **50** (1988), 53-73

MSC:
Primary 65M10; Secondary 35L65

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917818-1

MathSciNet review:
917818

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A systematic procedure for constructing explicit, quasi second-order approximations to strictly hyperbolic systems of conservation laws is presented. These new schemes are obtained by correcting first-order schemes. We prove that limit solutions satisfy the entropy inequality. In the scalar case, we prove convergence to the unique entropy-satisfying solution if the initial scheme is Total Variation Decreasing (i.e., TVD) and consistent with the entropy condition. Finally, we slightly modify Harten's high-order schemes such that they obey the previous conditions and thus converge towards the "entropy" solution.

**[1]**D. L. Book, J. P. Boris & K. Hain, "Flux corrected transport. II,"*J. Comput. Phys.*, v. 18, 1975, pp. 248-283.**[2]**Ronald J. DiPerna,*Uniqueness of solutions to hyperbolic conservation laws*, Indiana Univ. Math. J.**28**(1979), no. 1, 137–188. MR**523630**, https://doi.org/10.1512/iumj.1979.28.28011**[3]**Ami Harten,*High resolution schemes for hyperbolic conservation laws*, J. Comput. Phys.**49**(1983), no. 3, 357–393. MR**701178**, https://doi.org/10.1016/0021-9991(83)90136-5**[4]**Amiram Harten and Peter D. Lax,*A random choice finite difference scheme for hyperbolic conservation laws*, SIAM J. Numer. Anal.**18**(1981), no. 2, 289–315. MR**612144**, https://doi.org/10.1137/0718021**[5]**A. Harten, P. D. Lax & B. Van-Leer,*Upstream Differencing and Godunov Type Schemes for Hyperbolic Conservation Laws*, ICASE, 82-5.**[6]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[7]**Peter Lax,*Shock waves and entropy*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 603–634. MR**0393870****[8]**A. Y. le Roux,*Numerical stability for some equations of gas dynamics*, Math. Comp.**37**(1981), no. 156, 307–320. MR**628697**, https://doi.org/10.1090/S0025-5718-1981-0628697-8**[9]**A. Y. LeRoux and P. Quesseveur,*Convergence of an antidiffusion Lagrange-Euler scheme for quasilinear equations*, SIAM J. Numer. Anal.**21**(1984), no. 5, 985–994. MR**760627**, https://doi.org/10.1137/0721061**[10]**Andrew Majda and Stanley Osher,*A systematic approach for correcting nonlinear instabilities. The Lax-Wendroff scheme for scalar conservation laws*, Numer. Math.**30**(1978), no. 4, 429–452. MR**502526**, https://doi.org/10.1007/BF01398510**[11]**S. Osher & S. Chakravarthy,*High Resolution Schemes and the Entropy Condition*, ICASE 83-49.**[12]**E. Tadmor,*Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes*, ICASE 83-20.**[13]**Eitan Tadmor,*The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme*, Math. Comp.**43**(1984), no. 168, 353–368. MR**758188**, https://doi.org/10.1090/S0025-5718-1984-0758188-8**[14]**J.-P. Vila,*Simplified Godunov schemes for 2×2 systems of conservation laws*, SIAM J. Numer. Anal.**23**(1986), no. 6, 1173–1192. MR**865949**, https://doi.org/10.1137/0723079

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L65

Retrieve articles in all journals with MSC: 65M10, 35L65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917818-1

Article copyright:
© Copyright 1988
American Mathematical Society