A note on piecewise linear and multilinear table interpolation in many dimensions

Authors:
Alan Weiser and Sergio E. Zarantonello

Journal:
Math. Comp. **50** (1988), 189-196

MSC:
Primary 65D05; Secondary 65D15

MathSciNet review:
917826

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note is concerned with *N*-dimensional rectangular table interpolation, where *N* is relatively large (4 to 10). Two interpolants are considered: a piecewise multilinear generalization of piecewise bilinear interpolation on rectangles, and a piecewise linear generalization of piecewise linear interpolation on triangles. We show that the two interpolants have similar approximation properties, but the piecewise linear interpolant is much cheaper to evaluate.

**[1]**Eugene Allgower and Kurt Georg,*Simplicial and continuation methods for approximating fixed points and solutions to systems of equations*, SIAM Rev.**22**(1980), no. 1, 28–85. MR**554709**, 10.1137/1022003**[2]**Carl de Boor,*A practical guide to splines*, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR**507062****[3]**Ȧke Björck and Germund Dahlquist,*Numerical methods*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Translated from the Swedish by Ned Anderson; Prentice-Hall Series in Automatic Computation. MR**0368379****[4]**Wolfgang A. Dahmen and Charles A. Micchelli,*On the linear independence of multivariate 𝐵-splines. I. Triangulations of simploids*, SIAM J. Numer. Anal.**19**(1982), no. 5, 993–1012. MR**672573**, 10.1137/0719072**[5]**Paul F. Dubois,*Swimming upstream: calculating table lookups and piecewise functions*, Parallel computations, Comput. Tech., vol. 1, Academic Press, Orlando, FL, 1982, pp. 129–151. MR**759553****[6]**Klaus Höllig,*Multivariate splines*, SIAM J. Numer. Anal.**19**(1982), no. 5, 1013–1031. MR**672574**, 10.1137/0719073**[7]**H. W. Kuhn,*Some combinatorial lemmas in topology*, IBM J. Res. Develop.**4**(1960), 508–524. MR**0124038****[8]**Martin H. Schultz,*Spline analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Automatic Computation. MR**0362832**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D05,
65D15

Retrieve articles in all journals with MSC: 65D05, 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917826-0

Article copyright:
© Copyright 1988
American Mathematical Society