Asymptotic expansions of multiple integrals of rapidly oscillating functions

Authors:
T. Iwaniec and A. Lutoborski

Journal:
Math. Comp. **50** (1988), 215-228

MSC:
Primary 41A60

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917829-6

MathSciNet review:
917829

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Expansions of multiple integrals

*w*is a function on which is -periodic in the

*k*th variable, , and

*g*is smooth, are given in terms of negative powers of the integers . Estimates of the remainder term in the expansion are also given.

**[1]**M. Abramowitz & I. A. Stegun,*Handbook of Mathematical Functions*, Dover, New York, 1972.**[2]**U. Banerjee, L. J. Lardy & A. Lutoborski, "Asymptotic expansions of integrals of certain rapidly oscillating functions,"*Math. Comp.*, v. 49, 1987, pp. 243-249. MR**890265 (88e:41063)****[3]**A. Bensoussan, J. L. Lions & G. Papanicolaou,*Asymptotic Analysis of Periodic Structures*, North-Holland, Amsterdam, 1978. MR**503330 (82h:35001)****[4]**P. J. Davis & P. Rabinowitz,*Methods of Numerical Integration*, 2nd ed., Academic Press, New York, 1984. MR**760629 (86d:65004)****[5]**J. N. Lyness, "The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula, Part I. Functions whose early derivatives are continuous,"*Math. Comp.*, v. 24, 1970, pp. 101-135. MR**0260230 (41:4858)****[6]**H. J. Stetter, "Numerical approximation of Fourier transforms,"*Numer. Math.*, v. 8, 1966, pp. 235-249. MR**0198716 (33:6870)****[7]**G. Talenti, "Best constant in Sobolev inequality,"*Ann. Mat. Pura Appl.*, v. 110, 1976, pp. 353-372. MR**0463908 (57:3846)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A60

Retrieve articles in all journals with MSC: 41A60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917829-6

Article copyright:
© Copyright 1988
American Mathematical Society