Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers


Authors: R. Kannan, A. K. Lenstra and L. Lovász
Journal: Math. Comp. 50 (1988), 235-250
MSC: Primary 68Q20; Secondary 11A51, 11A63, 11J99, 11Y16, 68Q25
DOI: https://doi.org/10.1090/S0025-5718-1988-0917831-4
MathSciNet review: 917831
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the binary expansions of algebraic numbers do not form secure pseudorandom sequences; given sufficiently many initial bits of an algebraic number, its minimal polynomial can be reconstructed, and therefore the further bits of the algebraic number can be computed. This also enables us to devise a simple algorithm to factor polynomials with rational coefficients. All algorithms work in polynomial time.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker, "Linear forms in the logarithms of algebraic numbers I, II, III, IV," Mathematika, v. 13, 1966, pp. 204-216; ibid., v. 14, 1967, pp. 102-107; ibid., v. 14, 1967, pp. 220-228; ibid., v. 15, 1968, pp. 204-216. MR 0220680 (36:3732)
  • [2] L. Blum, M. Blum & M. Shub, A Simple Secure Pseudo Random Number Generator, Proceedings of Crypto 82.
  • [3] M. Blum & S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo Random Bits, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 112-117. MR 780388
  • [4] É. Borel, Leçons sur la Théorie des Fonctions, 2nd ed., 1914, pp. 182-216.
  • [5] A. J. Brentjes, "Multi-dimensional continued fraction algorithms," in Computational Methods in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centre Tracts 154, 155, Mathematisch Centrum, Amsterdam, 1982. MR 702520 (85f:11096)
  • [6] A. H. Copeland & P. Erdős, "Note on normal numbers," Bull. Amer. Math. Soc., v. 52, 1946, pp. 857-860. MR 0017743 (8:194b)
  • [7] D. G. Champernowne, "The construction of decimals normal in the scale of ten," J. London Math. Soc., v. 8, 1933, pp. 254-260.
  • [8] O. Goldreich, S. Goldwasser & S. Micali, How to Construct Random Functions, Proc. 25th Annual Symposium on Foundations of Computer Science, 1984, pp. 464-479. MR 872307 (88b:68082)
  • [9] S. Goldwasser, S. Micali & P. Tong, Why and How to Establish a Private Code on a Public Network, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 134-144. MR 780391
  • [10] P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley, New York, 1974. MR 0372162 (51:8378)
  • [11] I. N. Herstein, Topics in Algebra, 2nd ed., Xerox, 1976. MR 0356988 (50:9456)
  • [12] M.-P. Van der Hulst & A. K. Lenstra, Polynomial Factorization by Transcendental Evaluation, Proceedings Eurocal 85.
  • [13] R. Kannan, A. K. Lenstra & L. Lovász, Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers, Proc. 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 191-200.
  • [14] D. E. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley, Reading, Mass., 1981. MR 633878 (83i:68003)
  • [15] S. Landau & G. Miller, Solvability by Radicals is in Polynomial Time, Proc. 15th Annual ACM Symposium on Theory of Computing, 1983, pp. 140-151.
  • [16] A. K. Lenstra, H. W. Lenstra, Jr. &, L. Lovász, "Factoring polynomials with rational coefficients," Math. Ann., v. 261, 1982, pp. 513-534. MR 682664 (84a:12002)
  • [17] R. Loos, "Computing in algebraic extensions," Computer Algebra (B. Buchberger, G. Collins and R. Loos, eds.), Springer-Verlag, Berlin and New York, 1982, pp. 173-187. MR 728972
  • [18] M. Mignotte, "An inequality about factors of polynomials," Math. Comp., v. 28, 1974, pp. 1153-1157. MR 0354624 (50:7102)
  • [19] M. O. Rabin, "Probabilistic algorithms in finite fields," SIAM J. Comput., v. 9, 1980, pp. 273-280. MR 568814 (81g:12002)
  • [20] C. P. Schnorr, "A more efficient algorithm for lattice basis reduction," manuscript, 1985.
  • [21] A. Schönhage, The Fundamental Theorem of Algebra in Terms of Computational Complexity, Preliminary report, Math. Inst. Univ. Tübingen, 1982.
  • [22] A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and an Improved Basis Reduction Algorithm, Proc. 11th International Colloquium on Automata, Languages, and Programming, 1984, LNCS 172, 1984, pp. 436-447. MR 784270 (86i:68057)
  • [23] A. Shamir, On the Generation of Cryptographically Strong Pseudo-Random Sequences, Proc. 8th International Colloquium on Automata, Languages, and Programming, 1981.
  • [24] B. Trager, Algebraic Factoring and Rational Function Integration, Proc. SYMSAC 76, pp. 219-226.
  • [25] A. Yao, Theory and Applications of Trapdoor Functions, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 80-91. MR 780384

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 68Q20, 11A51, 11A63, 11J99, 11Y16, 68Q25

Retrieve articles in all journals with MSC: 68Q20, 11A51, 11A63, 11J99, 11Y16, 68Q25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0917831-4
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society