Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The sum of like powers of the zeros of the Riemann zeta function

Author: D. H. Lehmer
Journal: Math. Comp. 50 (1988), 265-273
MSC: Primary 11M26; Secondary 11Y35
MathSciNet review: 917834
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we discuss a method of evaluating the sum $ {\sigma _r} = \sum {{\rho ^{ - r}}} $ where r is an integer greater than 1 and the sum is taken over all the complex zeros of $ \zeta (s)$, the Riemann zeta function. The method requires the coefficients of the Maclaurin expansion of the entire function $ f(s) = (s - 1)\zeta (s)$. These are obtained from a limit theorem of Sitaramachandrarao by the use of the Euler-Maclaurin summation formula. The sum $ {\sigma _r}$ is then obtained from the logarithmic derivative of the function $ f(s)$. A table of $ {\sigma _r}$ is given to 30 decimals for $ r = 2(1)26$.

References [Enhancements On Off] (What's this?)

  • [1] B. Baillaud & H. Bourget, Correspondance d'Hermite et de Stieltjes, Tome 1, Gauthier-Villars, Paris, 1905.
  • [2] W. E. Briggs & S. Chowla, "The power series coefficients of $ \zeta (s)$," Amer. Math. Monthly, v. 62, 1955, pp. 323-325. MR 0069209 (16:999f)
  • [3] J. J. Y. Liang & John Todd, "The Stieltjes constants," J. Res. Nat. Bur. Standards Sect. B, v. 76B, 1972, pp. 161-178. MR 0326974 (48:5316)
  • [4] J. L. W. V. Jensen, "Sur la fonction $ \zeta (s)$ de Riemann," Comptes Rendus, v. 104, 1887, pp. 1156-1159.
  • [5] J. P. Gram, "Note sur le calcul de la fonction $ \zeta (s)$ de Riemann," K. Danske Vidensk. Selskab Forhandlingar, 1895, pp. 305-308.
  • [6] B. C. Berndt, "Chapter 8 of Ramanujan's second notebook," J. Reine Angew. Math., v. 338, 1983, pp. 1-55. MR 684013 (84g:01080)
  • [7] T. M. Apostol, "Formulas for higher derivatives of the Riemann zeta function," Math. Comp., v. 44, 1985, pp. 223-232. MR 771044 (86c:11063)
  • [8] R. Sitaramachandrarao, "Maclaurin coefficients of the Riemann zeta function," Abstracts Amer. Moth. Soc., v. 7, 1986, p. 280.
  • [9] M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions, Nat. Bur. Standards, Washington, D.C., 1964.
  • [10] R. Lienard, Tables Fondamentales à 50 Décimales des Sommes $ {S_n}$, $ {u_n}$, $ {\Sigma _n}$, Centre de Documentation Universitaire, Paris, 1948. MR 0026404 (10:149i)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11M26, 11Y35

Retrieve articles in all journals with MSC: 11M26, 11Y35

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society