Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An adaptive finite element method for linear elliptic problems


Authors: Kenneth Eriksson and Claes Johnson
Journal: Math. Comp. 50 (1988), 361-383
MSC: Primary 65N30; Secondary 65N50
DOI: https://doi.org/10.1090/S0025-5718-1988-0929542-X
MathSciNet review: 929542
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose an adaptive finite element method for linear elliptic problems based on an optimal maximum norm error estimate. The algorithm produces a sequence of successively refined meshes with a final mesh on which a given error tolerance is satisfied. In each step the refinement to be made is determined by locally estimating the size of certain derivatives of the exact solution through computed finite element solutions. We analyze and justify the algorithm in a model case.


References [Enhancements On Off] (What's this?)

  • [1] F. Angrand, V. Billey, J. Periaux, C. Pouletty & J. P. Rosenblum, 2-D and 3-D Euler Computations Around Lifting Bodies on Self Adapted Finite Element Meshes, Sixth International Symposium on Finite Element Methods in Flow Problems, Antibes, 1986.
  • [2] I. Babuška, "Feedback, adaptivity, and a posteriori estimates in finite elements: Aims, theory, and experience, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (I, Babuška, O. C. Zienkiewicz et al., eds.), Wiley, New York, 1986. MR 879443
  • [3] I. Babuška & A. Miller, A Posteriori Error Estimates and Adaptive Techniques for the Finite Element Method, Technical Note BN-968, Univ. of Maryland, 1981.
  • [4] I. Babuška & A. K. Noor, Quality Assessment and Control of Finite Element Solutions, Technical Note BN-1049, Univ. of Maryland, 1986.
  • [5] R. E. Bank, PLTMG Users' Guide, June, 1981 version, Technical Report, Department of Mathematics, University of California at San Diego, La Jolla.
  • [6] L. Demkowics, P. Devloo &. J. T. Oden, "On an h-type mesh refinement strategy based on minimization of interpolation errors," Comput. Methods Appl. Mech. Engrg., v. 53, 1985, pp. 67-89. MR 812590 (87a:65177)
  • [7] A. R. Diaz, N. Kikuchi & J. E. Taylor, "A method of grid optimization for finite element methods," Comput. Methods Appl. Mech. Engrg., v. 41, 1983, pp. 29-45. MR 723044 (85a:65157)
  • [8] K. Eriksson, "A maximum norm error estimate for the finite element method for linear elliptic problems under weak mesh regularity assumptions." (To appear).
  • [9] K. Eriksson, Adaptive Finite Element Methods Based on Optimal Error Estimates for Linear Elliptic Problems, Tech. Rep. 1987-02, Math. Dept., Chalmers Univ. of Technology, Göteborg, to appear in Math. Comp.
  • [10] K. Eriksson, C. Johnson & J. Lennblad, Optimal Error Estimates and Adaptive Time and Space Step Control for Linear Parabolic Problems, Preprint no. 1986-06, Dept. of Math., Chalmers Univ. of Technology, Göteborg, submitted to SIAM J. Numer. Anal. MR 1335652 (96c:65162)
  • [11] K. Eriksson & C. Johnson, "Error estimates and automatic time step control for nonlinear parabolic problems, I," SIAM J. Numer. Anal., v. 24, 1987, pp. 12-23. MR 874731 (88e:65114)
  • [12] K. Eriksson & C. Johnson, An Adaptive Finite Element Method for Linear Advection Problems, Tech. Rep., Math. Dept., Chalmers Univ. of Technology, Göteborg. (To appear).
  • [13] R. E. Ewing, "Adaptive mesh refinements in large scale fluid flow simulations," Accuracy Estimates and Adaptive Refinements in Finite Element Computations (I. Babuška, O. C. Zienkiewicz et al., eds.), Wiley, New York, 1986. MR 879442 (87j:65004)
  • [14] C. Johnson, Error Estimates and Automatic Time Step Control for Numerical Methods for Stiff Ordinary Differential Equations, Preprint no. 1984-27, Dept. of Math., Chalmers University of Technology, Göteborg; revised version to appear in SIAM J. Numer. Anal. MR 954791 (90a:65160)
  • [15] C. Johnson, Y.-Y. Nie & V. Thomée, An A Posteriori Error Estimate and Automatic Time Step Control for a Backward Euler Discretization of a Parabolic Problem, preprint no. 1985-23, Dept. of Math., Chalmers University of Technology, Göteborg, submitted to SIAM J. Numer. Anal. MR 1043607 (91g:65199)
  • [16] R. Lohner, K. Morgan & O. C. Zienkiewicz, "An adaptive finite element procedure for compressible high speed flows," Comput. Methods Appl. Mech. Engrg., v. 51, 1985, pp. 441-465. MR 822752 (87c:65121)
  • [17] R. Rannacher & R. Scott, "Some optimal error estimates for piecewise linear finite element approximations," Math. Comp., v. 38, 1982, pp. 437-445. MR 645661 (83e:65180)
  • [18] A. H. Schatz & L. B. Wahlbin, "Maximum norm estimates in the finite element method on plane polynomial domains. Part 1," Math. Comp., v. 32, 1978, pp. 73-109. MR 0502065 (58:19233a)
  • [19] A. H. Schatz & L. B. Wahlbin, "Maximum norm estimates in the finite element method on plane polygonal domains. Part 2, refinements," Math. Comp., v. 33, 1979, pp. 465-492. MR 0502067 (58:19233b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N50

Retrieve articles in all journals with MSC: 65N30, 65N50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0929542-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society