An adaptive finite element method for linear elliptic problems

Authors:
Kenneth Eriksson and Claes Johnson

Journal:
Math. Comp. **50** (1988), 361-383

MSC:
Primary 65N30; Secondary 65N50

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929542-X

MathSciNet review:
929542

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose an adaptive finite element method for linear elliptic problems based on an optimal maximum norm error estimate. The algorithm produces a sequence of successively refined meshes with a final mesh on which a given error tolerance is satisfied. In each step the refinement to be made is determined by locally estimating the size of certain derivatives of the exact solution through computed finite element solutions. We analyze and justify the algorithm in a model case.

**[1]**F. Angrand, V. Billey, J. Periaux, C. Pouletty & J. P. Rosenblum, 2-*D**and*3-*D Euler Computations Around Lifting Bodies on Self Adapted Finite Element Meshes*, Sixth International Symposium on Finite Element Methods in Flow Problems, Antibes, 1986.**[2]**I. Babuška,*Feedback, adaptivity, and a posteriori estimates in finite elements: aims, theory, and experience*, Accuracy estimates and adaptive refinements in finite element computations (Lisbon, 1984) Wiley Ser. Numer. Methods Engrg., Wiley, Chichester, 1986, pp. 3–23. MR**879443****[3]**I. Babuška & A. Miller,*A Posteriori Error Estimates and Adaptive Techniques for the Finite Element Method*, Technical Note BN-968, Univ. of Maryland, 1981.**[4]**I. Babuška & A. K. Noor,*Quality Assessment and Control of Finite Element Solutions*, Technical Note BN-1049, Univ. of Maryland, 1986.**[5]**R. E. Bank,*PLTMG Users' Guide*, June, 1981 version, Technical Report, Department of Mathematics, University of California at San Diego, La Jolla.**[6]**L. Demkowicz, Ph. Devloo, and J. T. Oden,*On an ℎ-type mesh-refinement strategy based on minimization of interpolation errors*, Comput. Methods Appl. Mech. Engrg.**53**(1985), no. 1, 67–89. MR**812590**, https://doi.org/10.1016/0045-7825(85)90076-3**[7]**Alejandro R. Díaz, Noboru Kikuchi, and John E. Taylor,*A method of grid optimization for finite element methods*, Comput. Methods Appl. Mech. Engrg.**41**(1983), no. 1, 29–45. MR**723044**, https://doi.org/10.1016/0045-7825(83)90051-8**[8]**K. Eriksson, "A maximum norm error estimate for the finite element method for linear elliptic problems under weak mesh regularity assumptions." (To appear).**[9]**K. Eriksson,*Adaptive Finite Element Methods Based on Optimal Error Estimates for Linear Elliptic Problems*, Tech. Rep. 1987-02, Math. Dept., Chalmers Univ. of Technology, Göteborg, to appear in*Math. Comp.***[10]**Kenneth Eriksson and Claes Johnson,*Adaptive finite element methods for parabolic problems. II. Optimal error estimates in 𝐿_{∞}𝐿₂ and 𝐿_{∞}𝐿_{∞}*, SIAM J. Numer. Anal.**32**(1995), no. 3, 706–740. MR**1335652**, https://doi.org/10.1137/0732033**[11]**Kenneth Eriksson and Claes Johnson,*Error estimates and automatic time step control for nonlinear parabolic problems. I*, SIAM J. Numer. Anal.**24**(1987), no. 1, 12–23. MR**874731**, https://doi.org/10.1137/0724002**[12]**K. Eriksson & C. Johnson,*An Adaptive Finite Element Method for Linear Advection Problems*, Tech. Rep., Math. Dept., Chalmers Univ. of Technology, Göteborg. (To appear).**[13]**I. Babuška, O. C. Zienkiewicz, J. Gago, and E. R. de A. Oliveira (eds.),*Accuracy estimates and adaptive refinements in finite element computations*, Wiley Series in Numerical Methods in Engineering, John Wiley & Sons, Ltd., Chichester, 1986. Lectures presented at the international conference held in Lisbon, June 1984; A Wiley-Interscience Publication. MR**879442****[14]**Claes Johnson,*Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations*, SIAM J. Numer. Anal.**25**(1988), no. 4, 908–926. MR**954791**, https://doi.org/10.1137/0725051**[15]**Claes Johnson, Yi Yong Nie, and Vidar Thomée,*An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem*, SIAM J. Numer. Anal.**27**(1990), no. 2, 277–291. MR**1043607**, https://doi.org/10.1137/0727019**[16]**R. Löhner, K. Morgan, and O. C. Zienkiewicz,*An adaptive finite element procedure for compressible high speed flows*, Comput. Methods Appl. Mech. Engrg.**51**(1985), no. 1-3, 441–465. FENOMECH ’84, Part I, II (Stuttgart, 1984). MR**822752**, https://doi.org/10.1016/0045-7825(85)90042-8**[17]**Rolf Rannacher and Ridgway Scott,*Some optimal error estimates for piecewise linear finite element approximations*, Math. Comp.**38**(1982), no. 158, 437–445. MR**645661**, https://doi.org/10.1090/S0025-5718-1982-0645661-4**[18]**A. H. Schatz and L. B. Wahlbin,*Maximum norm estimates in the finite element method on plane polygonal domains. I*, Math. Comp.**32**(1978), no. 141, 73–109. MR**0502065**, https://doi.org/10.1090/S0025-5718-1978-0502065-1**[19]**A. H. Schatz and L. B. Wahlbin,*Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements*, Math. Comp.**33**(1979), no. 146, 465–492. MR**0502067**, https://doi.org/10.1090/S0025-5718-1979-0502067-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N50

Retrieve articles in all journals with MSC: 65N30, 65N50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929542-X

Article copyright:
© Copyright 1988
American Mathematical Society