Superconvergence of a collocation-type method for simple turning points of Hammerstein equations

Author:
Sunil Kumar

Journal:
Math. Comp. **50** (1988), 385-398

MSC:
Primary 65R20; Secondary 45G10

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929543-1

MathSciNet review:
929543

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a simple turning point (, ) of the parameter-dependent Hammerstein equation

**[1]**P. M. Anselone,*Uniform approximation theory for integral equations with discontinuous kernels*, SIAM J. Numer. Anal.**4**(1967), 245–253. MR**0212515**, https://doi.org/10.1137/0704023**[2]**P. M. Anselone,*Collectively compact approximations of integral operators with discontinuous kernels*, J. Math. Anal. Appl.**22**(1968), 582–590. MR**0225202**, https://doi.org/10.1016/0022-247X(68)90197-2**[3]**Philip M. Anselone,*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR**0443383****[4]**K. Atkinson, I. Graham, and I. Sloan,*Piecewise continuous collocation for integral equations*, SIAM J. Numer. Anal.**20**(1983), no. 1, 172–186. MR**687375**, https://doi.org/10.1137/0720012**[5]**Ivan G. Graham, Stephen Joe, and Ian H. Sloan,*Iterated Galerkin versus iterated collocation for integral equations of the second kind*, IMA J. Numer. Anal.**5**(1985), no. 3, 355–369. MR**800020**, https://doi.org/10.1093/imanum/5.3.355**[6]**B. F. Gray & G. C. Wake, "Criticality in the infinite slab and cylinder with surface heat sources,"*Combustion and Flame*, v. 55, 1984, pp. 23-30.**[7]**S. Joe,*Collocation methods using piecewise polynomials for second kind integral equations*, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 391–400. MR**793970**, https://doi.org/10.1016/0377-0427(85)90033-0**[8]**S. Joe,*The Numerical Solution of Second Kind Fredholm Integral Equations*, Ph. D. Thesis, University of New South Wales, Sydney, 1985.**[9]**L. V. Kantorovich and G. P. Akilov,*Functional analysis*, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR**664597****[10]**M. A. Krasnosel′skiĭ and P. P. Zabreĭko,*Geometrical methods of nonlinear analysis*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 263, Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. MR**736839****[11]**Sunil Kumar,*Superconvergence of a collocation-type method for Hammerstein equations*, IMA J. Numer. Anal.**7**(1987), no. 3, 313–325. MR**968527**, https://doi.org/10.1093/imanum/7.3.313**[12]**S. Kumar, "The numerical solution of Hammerstein equations by a method based on polynomial collocation," 1987, submitted for publication.**[13]**Sunil Kumar and Ian H. Sloan,*A new collocation-type method for Hammerstein integral equations*, Math. Comp.**48**(1987), no. 178, 585–593. MR**878692**, https://doi.org/10.1090/S0025-5718-1987-0878692-4**[14]**G. Moore and A. Spence,*The calculation of turning points of nonlinear equations*, SIAM J. Numer. Anal.**17**(1980), no. 4, 567–576. MR**584731**, https://doi.org/10.1137/0717048**[15]**G. Moore and A. Spence,*The convergence of operator approximations at turning points*, IMA J. Numer. Anal.**1**(1981), no. 1, 23–38. MR**607244**, https://doi.org/10.1093/imanum/1.1.23**[16]**A. Spence and G. Moore,*A convergence analysis for turning points of nonlinear compact operator equations*, Numerical treatment of integral equations (Workshop, Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 53, Birkhäuser, Basel-Boston, Mass., 1980, pp. 203–212. MR**590452****[17]**P. H. Thomas, "On the thermal conduction equation for self-heating materials with surface cooling,"*Trans. Faraday Soc.*, v. 54, 1958, pp. 60-65.**[18]**G. Vainikko and P. Uba,*A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel*, J. Austral. Math. Soc. Ser. B**22**(1980/81), no. 4, 431–438. MR**626934**, https://doi.org/10.1017/S0334270000002770**[19]**Richard Weiss,*On the approximation of fixed points of nonlinear compact operations*, SIAM J. Numer. Anal.**11**(1974), 550–553. MR**0349049**, https://doi.org/10.1137/0711046

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45G10

Retrieve articles in all journals with MSC: 65R20, 45G10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929543-1

Article copyright:
© Copyright 1988
American Mathematical Society