Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Testing a class of methods for solving minimization problems with simple bounds on the variables


Authors: Andrew R. Conn, Nicholas I. M. Gould and Philippe L. Toint
Journal: Math. Comp. 50 (1988), 399-430
MSC: Primary 65K05; Secondary 90C30
DOI: https://doi.org/10.1090/S0025-5718-1988-0929544-3
MathSciNet review: 929544
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the results of a series of tests for a class of new methods of trust region type for solving the simple bound constrained minimization problem. The results are encouraging and lead us to believe that the methods will prove useful in solving large-scale problems.


References [Enhancements On Off] (What's this?)

  • [1] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, London and New York, 1982. MR 690767 (84k:90068)
  • [2] R. K. Brayton & J. Cullum, "An algorithm for minimizing a differentiable function subject to box constraints and errors," J. Optim. Theory Appl., v. 29, 1979, pp. 521-558. MR 552105 (81f:90087)
  • [3] A. R. Conn, N. I. M. Gould & Ph. L. Toint, "Global convergence of a class of trust region algorithms for optimization with simple bounds," SIAM J. Numer. Anal., v. 25, 1988, pp. 433-460. MR 933734 (89h:90192)
  • [4] E. E. Cragg & A. V. Levy, "Study on a supermemory gradient method for the minimization of functions," J. Optim. Theory Appl., v. 4, 1969, pp. 191-205. MR 0248967 (40:2217)
  • [5] J. Cullum & R. K. Brayton, "Some remarks on the symmetric rank-one update," J. Optim. Theory Appl., v. 29, 1979, pp. 493-520. MR 552104 (81f:90088)
  • [6] R. S. Dembo, S. C. Eisenstat & T. Steihaug, "Inexact Newton methods," SIAM J. Numer. Anal., v. 19, 1982, pp. 400-408. MR 650059 (83b:65056)
  • [7] R. S. Dembo & U. Tulowitzki, On the Minimization of Quadratic Functions Subject to Box Constraints, Working paper series B 71, School of Organization and Management, Yale University, 1983.
  • [8] J. E. Dennis & R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Ciffs, N.J., 1983. MR 702023 (85j:65001)
  • [9] R. Fletcher, Practical Methods of Optimization, Vol. 1, Wiley, Chichester and New York, 1980. MR 585160 (83i:65055a)
  • [10] R. Fletcher & M. P. Jackson, "Minimization of a quadratic function of many variables subject only to lower and upper bounds," J. Inst. Math. Appl., v. 14, 1974, pp. 159-174. MR 0384156 (52:5033)
  • [11] U. M. Garcia-Palomares, "Superlinearly convergent algorithms for linearly constrained optimization," in Nonlinear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London and New York, 1975, pp. 101-119. MR 0406522 (53:10309)
  • [12] P. E. Gill & W. Murray, Minimization Subject to Bounds on the Variables, report NAC 71, National Physical Laboratory, England, 1976.
  • [13] P. E. Gill, W. Murray, M. A. Saunders & M. H. Wright, Some Theoretical Properties of an Augmented Lagrangian Function, Technical Report SOL 86-6, Department of Operations Research, Stanford University, 1986.
  • [14] P. E. Gill, W. Murray & M. H. Wright, Practical Optimization, Academic Press, London and New York, 1981. MR 634376 (83d:65195)
  • [15] A. Griewank & Ph. L. Toint, "On the unconstrained optimization of partially separable functions," in Nonlinear Optimization, 1981 (M. J. D. Powell, ed.), Academic Press, London and New York, 1982, pp. 301-312. MR 775354
  • [16] A. Griewank & Ph. L. Toint, "Partitioned variable metric updates for large structured optimization problems," Numer. Math., v. 39, 1982, pp. 119-137. MR 664541 (83k:65054)
  • [17] W. Hock & K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin, 1981. MR 611512 (82f:90084)
  • [18] J. J. Moré, "Recent developments in algorithms and software for trust region methods," Mathematical Programming, The State of the Art, Bonn 1982 (A. Bachem, M. Grötschel and B. Korte, eds.), Springer-Verlag, Berlin, 1983, pp. 258-287. MR 717404 (85b:90066)
  • [19] J. J. Moré, B. S. Garbow & K. E. Hillstrom, "Testing unconstrained optimization software," ACM Trans. Math. Software, v. 7, 1981, pp. 17-41. MR 607350 (83b:90144)
  • [20] J. L. Nazareth, "Analogues of Dixon's and Powell's theorems for unconstrained minimization with inexact line searches," SIAM J. Numer. Anal., v. 23, 1986, pp. 170-177. MR 821913 (87h:90206)
  • [21] D. P. O'Leary, "A generalized conjugate gradient algorithm for solving a class of quadratic programming problems," Linear Algebra Appl., v. 34, 1980, pp. 371-399. MR 591439 (82e:90076)
  • [22] M. J. D. Powell, "A new algorithm for unconstrained optimization," in Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London and New York, 1970, pp. 31-65. MR 0272162 (42:7043)
  • [23] M. J. D. Powell, Some Global Convergence Properties of a Variable Metric Algorithm for Minimization Without Exact Line Searches, SIAM-AMS Proc., vol. 9, Amer. Math. Soc., Providence, R.I., 1976, pp. 53-72. MR 0426428 (54:14371)
  • [24] M. J. D. Powell, "How bad are the BFGS and DFP methods when the objective function is quadratic?," Math. Programming, v. 34, 1986, pp. 34-47. MR 819873 (87c:90197)
  • [25] D. F. Shanno & K. H. Phua, "Matrix conditioning and nonlinear optimization," Math. Programming, v. 14, 1978, pp. 145-160. MR 0474819 (57:14450)
  • [26] D. C. Sorensen, "An example concerning quasi-Newton estimation of a sparse Hessian," SIGNUM Newsletter, v. 16, 1981, pp. 8-10.
  • [27] T. Steihaug, "The conjugate gradient method and trust regions in large scale optimization," SIAM J. Numer. Anal., v. 20, 1983, pp. 626-637. MR 701102 (84g:49047)
  • [28] Ph. L. Toint, "Some numerical results using a sparse matrix updating formula in unconstrained optimization," Math. Comp., v. 32, 1978, pp. 839-851. MR 0483452 (58:3453)
  • [29] Ph. L. Toint, "Towards an efficient sparsity exploiting Newton method for minimization," in Sparse Matrices and Their Uses (I. S. Duff, ed.), Academic Press, London and New York, 1981.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65K05, 90C30

Retrieve articles in all journals with MSC: 65K05, 90C30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0929544-3
Keywords: Trust regions, optimization with simple bounds, numerical results
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society