Testing a class of methods for solving minimization problems with simple bounds on the variables

Authors:
Andrew R. Conn, Nicholas I. M. Gould and Philippe L. Toint

Journal:
Math. Comp. **50** (1988), 399-430

MSC:
Primary 65K05; Secondary 90C30

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929544-3

MathSciNet review:
929544

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the results of a series of tests for a class of new methods of trust region type for solving the simple bound constrained minimization problem. The results are encouraging and lead us to believe that the methods will prove useful in solving large-scale problems.

**[1]**Dimitri P. Bertsekas,*Constrained optimization and Lagrange multiplier methods*, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. MR**690767****[2]**R. K. Brayton and J. Cullum,*An algorithm for minimizing a differentiable function subject to box constraints and errors*, J. Optim. Theory Appl.**29**(1979), no. 4, 521–558. MR**552105**, https://doi.org/10.1007/BF00934451**[3]**A. R. Conn, N. I. M. Gould, and Ph. L. Toint,*Global convergence of a class of trust region algorithms for optimization with simple bounds*, SIAM J. Numer. Anal.**25**(1988), no. 2, 433–460. MR**933734**, https://doi.org/10.1137/0725029**[4]**E. E. Cragg and A. V. Levy,*Study on a supermemory gradient method for the minimization of functions*, J. Optimization Theory Appl.**4**(1969), 191–205. MR**0248967**, https://doi.org/10.1007/BF00930579**[5]**J. Cullum and R. K. Brayton,*Some remarks on the symmetric rank-one update*, J. Optim. Theory Appl.**29**(1979), no. 4, 493–519. MR**552104**, https://doi.org/10.1007/BF00934450**[6]**Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug,*Inexact Newton methods*, SIAM J. Numer. Anal.**19**(1982), no. 2, 400–408. MR**650059**, https://doi.org/10.1137/0719025**[7]**R. S. Dembo & U. Tulowitzki,*On the Minimization of Quadratic Functions Subject to Box Constraints*, Working paper series B 71, School of Organization and Management, Yale University, 1983.**[8]**John E. Dennis Jr. and Robert B. Schnabel,*Numerical methods for unconstrained optimization and nonlinear equations*, Prentice Hall Series in Computational Mathematics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983. MR**702023****[9]**R. Fletcher,*Practical methods of optimization. Vol. 1*, John Wiley & Sons, Ltd., Chichester, 1980. Unconstrained optimization; A Wiley-Interscience Publication. MR**585160**

R. Fletcher,*Practical methods of optimization. Vol. 2*, John Wiley & Sons, Ltd., Chichester, 1981. Constrained optimization; A Wiley-Interscience Publication. MR**633058****[10]**R. Fletcher and M. P. Jackson,*Minimization of a quadratic function of many variables subject only to lower and upper bounds*, J. Inst. Math. Appl.**14**(1974), 159–174. MR**0384156****[11]**U. M. García-Palomares,*Superlinearly convergent algorithms for linearly constrained optimization problems*, Nonlinear programming, 2 (Proc. Sympos. Special Interest Group on Math. Programming, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York, 1974, pp. 101–119. MR**0406522****[12]**P. E. Gill & W. Murray,*Minimization Subject to Bounds on the Variables*, report NAC 71, National Physical Laboratory, England, 1976.**[13]**P. E. Gill, W. Murray, M. A. Saunders & M. H. Wright,*Some Theoretical Properties of an Augmented Lagrangian Function*, Technical Report SOL 86-6, Department of Operations Research, Stanford University, 1986.**[14]**Philip E. Gill, Walter Murray, and Margaret H. Wright,*Practical optimization*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1981. MR**634376****[15]**A. Griewank and Ph. L. Toint,*On the unconstrained optimization of partially separable functions*, Nonlinear optimization, 1981 (Cambridge, 1981) NATO Conf. Ser. II: Systems Sci., Academic Press, London, 1982, pp. 301–312. MR**775354****[16]**A. Griewank and Ph. L. Toint,*Partitioned variable metric updates for large structured optimization problems*, Numer. Math.**39**(1982), no. 1, 119–137. MR**664541**, https://doi.org/10.1007/BF01399316**[17]**Willi Hock and Klaus Schittkowski,*Test examples for nonlinear programming codes*, Lecture Notes in Economics and Mathematical Systems, vol. 187, Springer-Verlag, Berlin-New York, 1981. MR**611512****[18]**J. J. Moré,*Recent developments in algorithms and software for trust region methods*, Mathematical programming: the state of the art (Bonn, 1982) Springer, Berlin, 1983, pp. 258–287. MR**717404****[19]**Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom,*Testing unconstrained optimization software*, ACM Trans. Math. Software**7**(1981), no. 1, 17–41. MR**607350**, https://doi.org/10.1145/355934.355936**[20]**J. L. Nazareth,*Analogues of Dixon’s and Powell’s theorems for unconstrained minimization with inexact line searches*, SIAM J. Numer. Anal.**23**(1986), no. 1, 170–177. MR**821913**, https://doi.org/10.1137/0723012**[21]**Dianne Prost O’Leary,*A generalized conjugate gradient algorithm for solving a class of quadratic programming problems*, Linear Algebra Appl.**34**(1980), 371–399. MR**591439**, https://doi.org/10.1016/0024-3795(80)90173-1**[22]**M. J. D. Powell,*A new algorithm for unconstrained optimization*, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1970, pp. 31–65. MR**0272162****[23]**M. J. D. Powell,*Some global convergence properties of a variable metric algorithm for minimization without exact line searches*, Nonlinear programming (Proc. Sympos., New York, 1975) Amer. Math. Soc., Providence, R. I., 1976, pp. 53–72. SIAM-AMS Proc., Vol. IX. MR**0426428****[24]**M. J. D. Powell,*How bad are the BFGS and DFP methods when the objective function is quadratic?*, Math. Programming**34**(1986), no. 1, 34–47. MR**819873**, https://doi.org/10.1007/BF01582161**[25]**D. F. Shanno and Kang Hoh Phua,*Matrix conditioning and nonlinear optimization*, Math. Programming**14**(1978), no. 2, 149–160. MR**0474819**, https://doi.org/10.1007/BF01588962**[26]**D. C. Sorensen, "An example concerning quasi-Newton estimation of a sparse Hessian,"*SIGNUM Newsletter*, v. 16, 1981, pp. 8-10.**[27]**Trond Steihaug,*The conjugate gradient method and trust regions in large scale optimization*, SIAM J. Numer. Anal.**20**(1983), no. 3, 626–637. MR**701102**, https://doi.org/10.1137/0720042**[28]**Ph. L. Toint,*Some numerical results using a sparse matrix updating formula in unconstrained optimization*, Math. Comp.**32**(1978), no. 143, 839–851. MR**0483452**, https://doi.org/10.1090/S0025-5718-1978-0483452-7**[29]**Ph. L. Toint, "Towards an efficient sparsity exploiting Newton method for minimization," in*Sparse Matrices and Their Uses*(I. S. Duff, ed.), Academic Press, London and New York, 1981.

Retrieve articles in *Mathematics of Computation*
with MSC:
65K05,
90C30

Retrieve articles in all journals with MSC: 65K05, 90C30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929544-3

Keywords:
Trust regions,
optimization with simple bounds,
numerical results

Article copyright:
© Copyright 1988
American Mathematical Society