Some computational results on a problem concerning powerful numbers

Authors:
A. J. Stephens and H. C. Williams

Journal:
Math. Comp. **50** (1988), 619-632

MSC:
Primary 11R11; Secondary 11A51, 11R27, 11Y16, 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929558-3

MathSciNet review:
929558

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *D* be a positive square-free integer and let be the fundamental unit in the order with **Z**-basis . An algorithm, which is of time complexity for any positive , is developed for determining whether or not . Results are presented for a computer run of this algorithm on all . The conjecture of Ankeny, Artin and Chowla is verified for all primes less than .

**[1]**N. C. Ankeny, E. Artin, and S. Chowla,*The class-number of real quadratic number fields*, Ann. of Math. (2)**56**(1952), 479–493. MR**0049948**, https://doi.org/10.2307/1969656**[2]**B. D. Beach, H. C. Williams, and C. R. Zarnke,*Some computer results on units in quadratic and cubic fields*, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971) Lakehead Univ., Thunder Bay, Ont., 1971, pp. 609–648. MR**0337887****[3]**G. Chrystal,*Textbook of Algebra*, part 2, 2nd ed., Dover reprint, New York, 1969, pp. 423-490.**[4]**P. Erdős, "Consecutive numbers,"*Eureka*38, 1975/76, pp. 3-8.**[5]**Andrew Granville,*Powerful numbers and Fermat’s last theorem*, C. R. Math. Rep. Acad. Sci. Canada**8**(1986), no. 3, 215–218. MR**841645****[6]**H. W. Lenstra Jr.,*On the calculation of regulators and class numbers of quadratic fields*, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge, 1982, pp. 123–150. MR**697260****[7]**R. A. Mollin and P. G. Walsh,*A note on powerful numbers, quadratic fields and the Pellian*, C. R. Math. Rep. Acad. Sci. Canada**8**(1986), no. 2, 109–114. MR**831787****[8]**L. J. Mordell,*On a pellian equation conjecture*, Acta Arith.**6**(1960), 137–144. MR**0118699**, https://doi.org/10.4064/aa-6-2-137-144**[9]**Oskar Perron,*Die Lehre von den Kettenbrüchen*, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR**0037384****[10]**R. J. Schoof,*Quadratic fields and factorization*, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 235–286. MR**702519****[11]**Daniel Shanks,*Class number, a theory of factorization, and genera*, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR**0316385****[12]**Daniel Shanks,*The infrastructure of a real quadratic field and its applications*, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 217–224. MR**0389842****[13]**R. Soleng, "A computer investigation of units in quadratic number fields," unpublished manuscript.**[14]**H. C. Williams,*A numerical investigation into the length of the period of the continued fraction expansion of √𝐷*, Math. Comp.**36**(1981), no. 154, 593–601. MR**606518**, https://doi.org/10.1090/S0025-5718-1981-0606518-7**[15]**H. C. Williams and M. C. Wunderlich,*On the parallel generation of the residues for the continued fraction factoring algorithm*, Math. Comp.**48**(1987), no. 177, 405–423. MR**866124**, https://doi.org/10.1090/S0025-5718-1987-0866124-1

Retrieve articles in *Mathematics of Computation*
with MSC:
11R11,
11A51,
11R27,
11Y16,
11Y40

Retrieve articles in all journals with MSC: 11R11, 11A51, 11R27, 11Y16, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0929558-3

Article copyright:
© Copyright 1988
American Mathematical Society