Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Are there odd amicable numbers not divisible by three?


Authors: S. Battiato and W. Borho
Journal: Math. Comp. 50 (1988), 633-637
MSC: Primary 11A51
DOI: https://doi.org/10.1090/S0025-5718-1988-0929559-5
MathSciNet review: 929559
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A conjecture of Bratley and McKay, according to which odd amicable numbers should be divisible by three, is disproved by some counterexamples.


References [Enhancements On Off] (What's this?)

  • [1] W. Borho, "Befreundete Zahlen," in Lebendige Zahlen, Math. Miniaturen, vol. 1, Birkhäuser, Basel, 1981.
  • [2] W. Borho, H. Hoffmann, "Breeding amicable numbers in abundance," Math. Comp., v. 46, 1986, pp. 281-293. MR 815849 (87c:11003)
  • [3] P. Bratley & J. McKay, "More amicable numbers," Math. Comp., v. 22, 1968, pp. 677-678. MR 0225706 (37:1299)
  • [4] R. K. Guy, Unsolved Problems in Number Theory, Vol 1, Springer-Verlag, New York, Heidelberg, Berlin, 1981, pp. 31-32. MR 656313 (83k:10002)
  • [5] E. J. Lee & J. S. Madachy, "The history and discovery of amicable numbers," J. Recreational Math., v. 5, 1972, pp. 77-93, 153-173, 231-249.
  • [6] H. J. J. te Riele, "On generating new amicable pairs from given amicable pairs," Math. Comp., v. 42, 1984, pp. 219-223. MR 725997 (85d:11107)
  • [7] H. J. J. te Riele, W. Borho, S. Battiato, H. Hoffmann & E. J. Lee, Table of Amicable Pairs between $ {10^{10}}$ and $ {10^{52}}$, Centrum voor Wiskunde en Informatica, Note NM-N8603, Stichting Math. Centrum, Amsterdam, 1986.
  • [8] H. J. J. te Riele, "Computation of all the amicable pairs below $ {10^{10}}$," Math. Comp., v. 47, 1986, pp. 361-368. MR 842142 (87i:11014)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11A51

Retrieve articles in all journals with MSC: 11A51


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0929559-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society