TABLE ERRATA

On p. 234, the right side of Eq. (10) should read

\[(1 + 2at) \exp(at) \text{Erfc}(\alpha^{1/2} t^{1/2}) - 2\pi^{-1/2} \alpha^{1/2} t^{1/2}.\]

On p. 283, in Eq. (42), for \(t^{-n}\) read \(t^{-n-1}\). The case \(n = 0\) now gives Eq. (40), as it should.

J. H. KNIGHT
J. R. PHILIP

CSIRO Division of Environmental Mechanics
G.P.O. Box 821
Canberra, ACT 2601, Australia

<table>
<thead>
<tr>
<th>Page</th>
<th>Erratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.57</td>
<td>7.27 For (K_{\nu}[2a(p - ia)^{1/2}]), read (K_{\nu}[2a(p - ib)^{1/2}]).</td>
</tr>
<tr>
<td>p.112</td>
<td>11.56 For (b), read (\nu).</td>
</tr>
<tr>
<td>p.113</td>
<td>12.5 For ((t^2 - a^2 - b)), read ((t^2 - a^2 - b^2)).</td>
</tr>
<tr>
<td>p.157</td>
<td>15.46 For (\frac{1}{2}(p + s)), read (\frac{1}{2}b(p + s)).</td>
</tr>
<tr>
<td>p.224</td>
<td>2.74 For ((1 + ap)_n), read ([(1 + ap)_n]^{-1}).</td>
</tr>
<tr>
<td>p.229</td>
<td>3.22 For (a^2t), read (\exp(a^2t)).</td>
</tr>
<tr>
<td>p.229</td>
<td>3.23 For ((p^{1/2} + a)), read ((p^{1/2} + a)^{-1}).</td>
</tr>
<tr>
<td>p.229</td>
<td>3.25 The right side should be ((1 + 2a^2t) \exp(a^2t) \text{Erfc}(at^{1/2}) - 2a(t/\pi)^{1/2}).</td>
</tr>
<tr>
<td>p.231</td>
<td>3.36 For ((3 + 2a^2t)), read ((3 + 2a^2t) \exp(a^2t)).</td>
</tr>
<tr>
<td>p.258</td>
<td>5.91 For ((3 - \frac{3}{2}a^2/t + \frac{1}{4}a^4/t^2)), read ((3 - 3a^2/t + \frac{1}{4}a^4/t^2) \exp(-\frac{1}{4}a^2/t)).</td>
</tr>
<tr>
<td>p.260</td>
<td>5.102 For (bt^2), read (b^2t).</td>
</tr>
<tr>
<td>p.261</td>
<td>5.109 For ((p^2 - a^2)^{-1/2}), read ((p^2 + a^2)^{-1/2}).</td>
</tr>
<tr>
<td>p.282</td>
<td>7.34 For (\log(2p^2 - 2p + 2)), read (\log(p^2 - 2p + 2)).</td>
</tr>
</tbody>
</table>
p.283: 7.39 For $p^2 + (b^2 - a^2)^2$, read $(p^2 + b^2 - a^2)^2$.
For $\text{sn}(at)$, read $\sin(at)$.

p.298: 8.73 For $H[t - (a + b + 2an)^2]$, read $H[t - (a + b + 2an)]$.

p.307: 10.7 For e^{-ap}, read b^{-ap}.

p.331: 12.39 For $\frac{\partial}{\partial a}$, read $\frac{\partial}{\partial b}$.

p.338: 13.39 Remove the horizontal line between entries 13.39 and 13.40 and
13.40 delete the number 13.40, as the right side of 13.40 should be
part of the right side of 13.39.

13.46 For t^{-n}, read $t^{-n-\nu-1}$.

J. H. Knight

CSIRO Division of Environmental Mechanics
G.P.O. Box 821
Canberra, ACT 2601, Australia

612.—LEONARDO PISANO FIBONACCI, The Book of Squares, An Annotated
Translation into Modern English by L. E. Sigler, Academic Press, Orlando, Fla.,
1987.

The following typographical corrections should be made in equations appearing
in the comments appended to the translated text.

P. 8, line 3 from below: For $(6n^2 + 6n)^2 + [3(2n + 1)^2] = (6n^2 + 6n + 3)$, read
$(6n^2 + 6n)^2 + [3(2n + 1)]^2 = (6n^2 + 6n + 3)^2$.

P. 23, line 4: For $(52/5)^2 + (29/5)^2 = 13^2$, read $(52/5)^2 + (39/5)^2 = 13^2$.

P. 83, line 9 from below: For $n^2 - nm = mn - m^2$, read $n^2 - nm = mn + m^2$.

P. 89, line 16: For $25/12 - 1 = 1/12$
$25/12 + 1 = 49/12$, read $25/12 - 2 =
25/12 + 2 = 49/12$.

P. 89, line 17: For $(25/12)^2 - (25/12) = (5/12)^2$
$(25/12)^2 + (25/12) = (35/12)^2$, read
$(25/12)^2 - 2(25/12) = (5/12)^2$
$(25/12)^2 + 2(25/12) = (35/12)^2$.

P. 106, line 9 from below: For $a + [(a - 1)]^2 = [(a + 1)/2]^2$, read $a + [(a - 1)/2]^2 =
[(a + 1)/2]^2$.

P. 107, line 3: For $8^2 + 720^2 = 725^2$, read $85^2 + 720^2 = 725^2$.

P. 107, line 5: For $8^2 + 204^2 = 221^2$, read $85^2 + 204^2 = 221^2$.

P. 115, line 13 from below: For $x^2 + x + y^2 + z^2 = r^2$, read $x^2 + x + y + z = r^2$.

J. W. W.