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On p. 75, every occurrence of the superscript p + 1/2 in Eq. (68) and on line 11

should be changed to p — 1/2.
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Carsten Eckhardt of Göttingen has pointed out that the algorithm to determine

the structure of the Sylow p-subgroup Sp of the class group may only produce a

subgroup of Sp. In all of the cases in which this algorithm was run we actually

obtained Sp; hence, the results in Section 5 are not affected by this observation.

Nevertheless, the complexity result given in the paper has not been proved. This

difficulty can be overcome by first extending and improving Algorithm 4.1. We first

note that we may assume that |A| is large enough so that R > 1 (see, for example,

Cusick [1]).

We let t)i (i = 1,2,..., k) be k reduced ideals of Ok with periods p, = p*1' (p¿ E

Z), where p is a prime. We put P = p\p2 • ■ ■ pk =p>i. Given a reduced ideal j, our

new algorithm will either determine i, (< pi) (i = 1,2,..., k) such that (4.1) holds

or establish that no such set of í¿'s exists. This algorithm executes in 0(y/PR\A\£)

elementary operations. We note that if (4.1) holds, then

k k

(i) \f[w~rx ~t[W)q\
i=l 1=1

where í, = m¿<7¿ + r¿, m¿ > 0, 0 < r¿ < p¿. When m¿ ^ 0, we may assume that

r¿ < m¿ and 0 < c¿ < f,/m¿ < Pi/mi. Given these bounds on r¿ and ç, for a

fixed set of values of the rn¿'s, we let C\ and C2 denote the number of ideal classes

represented by the left-hand and right-hand side of (1), respectively.

When P > R, our approach will be to produce a sorted list J of the C\ x

0(R) reduced ideals that could be equivalent to the left-hand side of (1). We

then determine whether any particular reduced ideal among the C2 ideal classes

represented by the right-hand side of (1) is in J. If none is, then (4.1) has no

solution; if one is, then we can easily provide a solution of (1). The number of

elementary operations needed to do this is 0(RCi\A\£) + 0(C2|A|£).
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We consider two subcases. If ^/p < 21og2(/i + Y), find s (> 0) such that ps <

y/pP/R and ps+1 > y/pP/R and find n (> 0) such that

n

A = 2J ßi < s    and    A + ¿¿n+i > s.
i=l

Put 7 = s - X > 0, mi = 0 (¿ = 1,2,3,.. .,n), mn+i = p1, mi = 1 (i = n + 2,

n + 3,...,k). In this subcase,

n fc

Ci < mn+1 J] Pi = ps    and    C72 < p^   J]   pt = P/ps.

t=l ¿=n+l

Since O(ÄCi) = 0(y/pFÏÏ),0(C2) = O(yJpPR), and y/p < 2log2(h + Y) <

2log2(h + 2Y) = 0(|A|e), we see that we need to perform 0(y/PR\A\£) elementary

operations.

When y/p > 21og2(/z + Y) > 2logh> 2k, we put p% = v/(p/ä1/m)m' > 1 and

note that P1P2•••Pfc = y/P/R- If M% = [p¿] and A/, = M¿ + 1, we get

k _ k

Y\ Mi < xfPjR   and    ]J Ni > y/P/R-
»=i ¿=i

Find the least value of n (> 1) such that

n k

l[Ni    J]    Mt>y/P/R.
i=l       i=n+l

Put m,i = M% (i = 1,2,... ,n), m¿ = A/, (* = n+l,n+2,...,fc). Since Nn/Mn < 2,

we have ^/P/Ä < Il¿=i ™« < 2y/P/R. Also, Cx < n"=i m* and

fc fc / fc \

t=i ¿=i \i=i   /

Since mi/pi < 2/(pi?1/")'J'/2 and ^ > 2A, we have J^ml mi/pl = O(l).

Thus, in this subcase we need to perform 0(y/PR\A\£) elementary operations.

When P < R, we put m¿ = 0 (i = 1,2,3,..., k). Here we have C\ < P and

C2 = 1. If we put S = \/P.R and use Algorithm 2.1 in the manner suggested in the

second case of Algorithm 4.1, we can determine whether or not (4.1) has a solution

in

0(S\A\£) + 0(PR\A\£/S) = 0(y/PR\A\E)

elementary operations.

We also require a simple result from group theory. We let H be an abelian

p-group such that

H= (91) x (92) x ••• x (gk),

where \(gi)\ = p^'. Consider <?fc+i, where |(<?fc+i)| = p'i*+1 and let G be the group

(H,gk+i). Let Afc+i be the least nonnegative integer such that

(2) ¿r=n
î=l
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where tx = px,mi, (m,i,p) = 1, 0 < X% < p¿. If no such value of Xk+i exists, then

G = H x (gk+i); otherwise, let p = min{Ai, A2, • • •, Xk+i} and put

(TT    m,px>-"\    -px*+i-"
[[9i J9k+i

It is now a simple matter to prove the following

THEOREM. If ß = Xk+X, then G = H x (g); if ß = Xj (j t¿ fc + 1), then

G = (Hj,gk+X) x (g), where

Hj = (ffi) x (g2) x • ■ • x (g^x) x (gj+1) x • • • x (fffc).

By using this theorem, it is easy to show that if g\, 32, ■ • •, 9m generate an abelian

p-group Sp of order pn, then we need to utilize 0(nm2) determinations like (2) to

find the group structure of Sp. Combining this with our algorithm above and the

arguments used in the last paragraph of Section 4, we now see that algorithms for

determining h and the class group structure can be developed which will execute

in 0(|A|1/5+£) and 0(|A|1/4+£) elementary operations, respectively.
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