Convergence rates for regularized solutions

Author:
Mark A. Lukas

Journal:
Math. Comp. **51** (1988), 107-131

MSC:
Primary 65R20; Secondary 41A25, 45L05

MathSciNet review:
942146

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a first-kind integral equation

*W*of the regularization functional . It is shown that in any one of a wide class of norms, which includes , if in a certain way as , then converges to the true solution . Convergence rates are obtained and are used to estimate the optimal regularization parameter .

**[1]**N. Aronszajn,*Theory of reproducing kernels*, Trans. Amer. Math. Soc.**68**(1950), 337–404. MR**0051437**, 10.1090/S0002-9947-1950-0051437-7**[2]**Jean-Pierre Aubin,*Applied functional analysis*, John Wiley & Sons, New York-Chichester-Brisbane, 1979. Translated from the French by Carole Labrousse; With exercises by Bernard Cornet and Jean-Michel Lasry. MR**549483****[3]**Colin Bennett and John E. Gilbert,*Homogeneous algebras on the circle. II. Multipliers, Ditkin conditions*, Ann. Inst. Fourier (Grenoble)**22**(1972), no. 3, 21–50 (English, with French summary). MR**0338783****[4]**Dennis D. Cox,*Asymptotics for 𝑀-type smoothing splines*, Ann. Statist.**11**(1983), no. 2, 530–551. MR**696065****[5]**Dennis D. Cox,*Multivariate smoothing spline functions*, SIAM J. Numer. Anal.**21**(1984), no. 4, 789–813. MR**749371**, 10.1137/0721053**[6]**D. D. Cox,*Approximation of Method of Regularization Estimators*, Technical Report No. 723, Dept. of Statistics, Univ. of Wisconsin-Madison, 1983.**[7]**Peter Craven and Grace Wahba,*Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation*, Numer. Math.**31**(1978/79), no. 4, 377–403. MR**516581**, 10.1007/BF01404567**[8]**John W. Hilgers,*On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems*, SIAM J. Numer. Anal.**13**(1976), no. 2, 172–184. MR**0471293****[9]**Einar Hille,*Introduction to general theory of reproducing kernels*, Rocky Mountain J. Math.**2**(1972), no. 3, 321–368. MR**0315109****[10]**M. Z. Nashed and Grace Wahba,*Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations*, SIAM J. Math. Anal.**5**(1974), 974–987. MR**0358405****[11]**Frank Natterer,*Error bounds for Tikhonov regularization in Hilbert scales*, Applicable Anal.**18**(1984), no. 1-2, 29–37. MR**762862**, 10.1080/00036818408839508**[12]**John Rice and Murray Rosenblatt,*Integrated mean squared error of a smoothing spline*, J. Approx. Theory**33**(1981), no. 4, 353–369. MR**646156**, 10.1016/0021-9045(81)90066-6**[13]**John Rice and Murray Rosenblatt,*Smoothing splines: regression, derivatives and deconvolution*, Ann. Statist.**11**(1983), no. 1, 141–156. MR**684872****[14]**Frigyes Riesz and Béla Sz.-Nagy,*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727****[15]**P. Speckman, "The asymptotic integrated mean square error for smoothing noisy data by splines,"*Numer. Math.*(To appear.)**[16]**Ulrich Tippenhauer,*Methoden zur Bestimmung von Reprokernen*, J. Approximation Theory**21**(1977), no. 4, 394–410 (German, with English summary). MR**0467272****[17]**Hans Triebel,*Interpolation theory, function spaces, differential operators*, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**503903****[18]**F. Utreras Diaz,*Sur le choix du paramètre d’ajustement dans le lissage par fonctions spline*, Numer. Math.**34**(1980), no. 1, 15–28 (French, with English summary). MR**560791**, 10.1007/BF01463995**[19]**Florencio Utreras,*Natural spline functions, their associated eigenvalue problem*, Numer. Math.**42**(1983), no. 1, 107–117. MR**716477**, 10.1007/BF01400921**[20]**Grace Wahba,*Convergence rates of certain approximate solutions to Fredholm integral equations of the first kind*, J. Approximation Theory**7**(1973), 167–185. MR**0346453****[21]**Grace Wahba,*Practical approximate solutions to linear operator equations when the data are noisy*, SIAM J. Numer. Anal.**14**(1977), no. 4, 651–667. MR**0471299****[22]**Grace Wahba,*Constrained regularization for ill-posed linear operator equations, with applications in meteorology and medicine*, Statistical decision theory and related topics, III, Vol. 2 (West Lafayette, Ind., 1981) Academic Press, New York, 1982, pp. 383–418. MR**705326**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
41A25,
45L05

Retrieve articles in all journals with MSC: 65R20, 41A25, 45L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942146-8

Article copyright:
© Copyright 1988
American Mathematical Society