Sinc-Nyström method for numerical solution of one-dimensional Cauchy singular integral equation given on a smooth arc in the complex plane

Authors:
Bernard Bialecki and Frank Stenger

Journal:
Math. Comp. **51** (1988), 133-165

MSC:
Primary 65R20

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942147-X

MathSciNet review:
942147

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a numerical method based on Sinc functions to obtain an approximate solution of a one-dimensional Cauchy singular integral equation (CSIE) over an arbitrary, smooth, open arc *L* of finite length in the complex plane. At the outset, we reduce the CSIE to a Fredholm integral equation of the second kind via a regularization procedure. We then obtain an approximate solution to the Fredholm integral equation by means of Nyström's method based on a Sinc quadrature rule. We approximate the matrix and right-hand side of the resulting linear system by an efficient method of computing the Cauchy principal value integrals. The error of an *N*-point approximation converges to zero at the rate , as , provided that the coefficients of the CSIE are analytic in a region *D* containing the arc *L* and satisfy a Lipschitz condition in *D*.

**[1]**Philip M. Anselone,*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR**0443383****[2]**Kendall E. Atkinson,*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585****[3]**M. L. Dow and David Elliott,*The numerical solution of singular integral equations over (-1,1)*, SIAM J. Numer. Anal.**16**(1979), no. 1, 115–134. MR**518688**, https://doi.org/10.1137/0716009**[4]**David Elliott,*The classical collocation method for singular integral equations*, SIAM J. Numer. Anal.**19**(1982), no. 4, 816–832. MR**664887**, https://doi.org/10.1137/0719057**[5]**David Elliott,*Rates of convergence for the method of classical collocation for solving singular integral equations*, SIAM J. Numer. Anal.**21**(1984), no. 1, 136–148. MR**731218**, https://doi.org/10.1137/0721009**[6]**D. Elliott & F. Stenger,*Sinc Method of Solution of Singular Integral Equations*, IMACS Symposium on Numerical Solution of Singular Integral Equations, IMACS, 1984, pp. 27-35.**[7]**G. M. Goluzin,*Geometric theory of functions of a complex variable*, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR**0247039****[8]**N. I. Ioakimidis,*On the weighted Galerkin method of numerical solution of Cauchy type singular integral equations*, SIAM J. Numer. Anal.**18**(1981), no. 6, 1120–1127. MR**639002**, https://doi.org/10.1137/0718076**[9]**N. I. Ioakimidis,*Further convergence results for the weighted Galerkin method of numerical solution of Cauchy-type singular integral equations*, Math. Comp.**41**(1983), no. 163, 79–85. MR**701625**, https://doi.org/10.1090/S0025-5718-1983-0701625-4**[10]**Peter Linz,*An analysis of a method for solving singular integral equations*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 3, 329–337. MR**0483594****[11]**George Miel,*On the Galerkin and collocation methods for a Cauchy singular integral equation*, SIAM J. Numer. Anal.**23**(1986), no. 1, 135–143. MR**821910**, https://doi.org/10.1137/0723009**[12]**N. I. Muskhelishvili,*Singular integral equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR**0355494****[13]**Frank Stenger,*Numerical methods based on Whittaker cardinal, or sinc functions*, SIAM Rev.**23**(1981), no. 2, 165–224. MR**618638**, https://doi.org/10.1137/1023037**[14]**K. S. Thomas,*Galerkin methods for singular integral equations*, Math. Comp.**36**(1981), no. 153, 193–205. MR**595052**, https://doi.org/10.1090/S0025-5718-1981-0595052-9**[15]**J. H. Wilkinson,*Rounding errors in algebraic processes*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR**0161456**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20

Retrieve articles in all journals with MSC: 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942147-X

Keywords:
Cauchy singular integral equation

Article copyright:
© Copyright 1988
American Mathematical Society