SincNyström method for numerical solution of onedimensional Cauchy singular integral equation given on a smooth arc in the complex plane
Authors:
Bernard Bialecki and Frank Stenger
Journal:
Math. Comp. 51 (1988), 133165
MSC:
Primary 65R20
MathSciNet review:
942147
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We develop a numerical method based on Sinc functions to obtain an approximate solution of a onedimensional Cauchy singular integral equation (CSIE) over an arbitrary, smooth, open arc L of finite length in the complex plane. At the outset, we reduce the CSIE to a Fredholm integral equation of the second kind via a regularization procedure. We then obtain an approximate solution to the Fredholm integral equation by means of Nyström's method based on a Sinc quadrature rule. We approximate the matrix and righthand side of the resulting linear system by an efficient method of computing the Cauchy principal value integrals. The error of an Npoint approximation converges to zero at the rate , as , provided that the coefficients of the CSIE are analytic in a region D containing the arc L and satisfy a Lipschitz condition in D.
 [1]
Philip
M. Anselone, Collectively compact operator approximation theory and
applications to integral equations, PrenticeHall Inc., Englewood
Cliffs, N. J., 1971. With an appendix by Joel Davis; PrenticeHall Series
in Automatic Computation. MR 0443383
(56 #1753)
 [2]
Kendall
E. Atkinson, A survey of numerical methods for the solution of
Fredholm integral equations of the second kind, Society for Industrial
and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585
(58 #3577)
 [3]
M.
L. Dow and David
Elliott, The numerical solution of singular integral equations over
(1,1), SIAM J. Numer. Anal. 16 (1979), no. 1,
115–134. MR
518688 (80b:65151), http://dx.doi.org/10.1137/0716009
 [4]
David
Elliott, The classical collocation method for singular integral
equations, SIAM J. Numer. Anal. 19 (1982),
no. 4, 816–832. MR 664887
(83f:65208), http://dx.doi.org/10.1137/0719057
 [5]
David
Elliott, Rates of convergence for the method of classical
collocation for solving singular integral equations, SIAM J. Numer.
Anal. 21 (1984), no. 1, 136–148. MR 731218
(85i:65171), http://dx.doi.org/10.1137/0721009
 [6]
D. Elliott & F. Stenger, Sinc Method of Solution of Singular Integral Equations, IMACS Symposium on Numerical Solution of Singular Integral Equations, IMACS, 1984, pp. 2735.
 [7]
G.
M. Goluzin, Geometric theory of functions of a complex
variable, Translations of Mathematical Monographs, Vol. 26, American
Mathematical Society, Providence, R.I., 1969. MR 0247039
(40 #308)
 [8]
N.
I. Ioakimidis, On the weighted Galerkin method of numerical
solution of Cauchy type singular integral equations, SIAM J. Numer.
Anal. 18 (1981), no. 6, 1120–1127. MR 639002
(82k:65083), http://dx.doi.org/10.1137/0718076
 [9]
N.
I. Ioakimidis, Further convergence results for the
weighted Galerkin method of numerical solution of Cauchytype singular
integral equations, Math. Comp.
41 (1983), no. 163, 79–85. MR 701625
(84g:65164), http://dx.doi.org/10.1090/S00255718198307016254
 [10]
Peter
Linz, An analysis of a method for solving singular integral
equations, Nordisk Tidskr. Informationsbehandling (BIT)
17 (1977), no. 3, 329–337. MR 0483594
(58 #3586)
 [11]
George
Miel, On the Galerkin and collocation methods for a Cauchy singular
integral equation, SIAM J. Numer. Anal. 23 (1986),
no. 1, 135–143. MR 821910
(87g:65165), http://dx.doi.org/10.1137/0723009
 [12]
N.
I. Muskhelishvili, Singular integral equations,
WoltersNoordhoff Publishing, Groningen, 1972. Boundary problems of
functions theory and their applications to mathematical physics; Revised
translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
(50 #7968)
 [13]
Frank
Stenger, Numerical methods based on Whittaker cardinal, or sinc
functions, SIAM Rev. 23 (1981), no. 2,
165–224. MR
618638 (83g:65027), http://dx.doi.org/10.1137/1023037
 [14]
K.
S. Thomas, Galerkin methods for singular integral
equations, Math. Comp. 36
(1981), no. 153, 193–205. MR 595052
(82c:65092), http://dx.doi.org/10.1090/S00255718198105950529
 [15]
J.
H. Wilkinson, Rounding errors in algebraic processes,
PrenticeHall Inc., Englewood Cliffs, N.J., 1963. MR 0161456
(28 #4661)
 [1]
 P. M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, PrenticeHall, Englewood Cliffs, N.J., 1971. MR 0443383 (56:1753)
 [2]
 K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, Pa., 1976. MR 0483585 (58:3577)
 [3]
 M. L. Dow & D. Elliott, "The numerical solution of singular integral equations over ," SIAM J. Numer. Anal., v. 16, 1979, pp. 115134. MR 518688 (80b:65151)
 [4]
 D. Elliott, "The classical collocation method for singular integral equations," SIAM J. Numer. Anal., v. 19, 1982, pp. 816832. MR 664887 (83f:65208)
 [5]
 D. Eeeiott, "Rates of convergence for the method of classical collocation for solving singular integral equations," SIAM J. Numer. Anal., v. 21, 1984, pp. 136148. MR 731218 (85i:65171)
 [6]
 D. Elliott & F. Stenger, Sinc Method of Solution of Singular Integral Equations, IMACS Symposium on Numerical Solution of Singular Integral Equations, IMACS, 1984, pp. 2735.
 [7]
 G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. Math. Monos., vol. 26, Amer. Math. Soc., Providence, R.I., 1969. MR 0247039 (40:308)
 [8]
 N. I. Ioskimidis, "On the weighted Galerkin method of numerical solution of Cauchy type singular integral equations," SIAM J. Numer. Anal., v. 18, 1981, pp. 11201127. MR 639002 (82k:65083)
 [9]
 N. I. Ioakimidis, "Further convergence results for the weighted Galerkin method of numerical solution of Cauchytype singular integral equations," Math. Comp., v. 41, 1983, pp. 7985. MR 701625 (84g:65164)
 [10]
 P. Linz, "An analysis of a method for solving singular integral equations," BIT, v. 17, 1977, pp. 329337. MR 0483594 (58:3586)
 [11]
 G. Miel, "On the Galerkin and collocation methods for a Cauchy singular integral equation," SIAM J. Numer. Anal., v. 23, 1986, pp. 135143. MR 821910 (87g:65165)
 [12]
 N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1958. MR 0355494 (50:7968)
 [13]
 F. Stenger, "Numerical methods based on Whittaker cardinal, or Sinc functions," SIAM Rev., v. 23, 1981, pp. 165224. MR 618638 (83g:65027)
 [14]
 K. S. Thomas, "Galerkin methods for singular integral equations," Math. Comp., v. 36, 1981, pp. 193205. MR 595052 (82c:65092)
 [15]
 J. H. Wilkinson, Rounding Errors in Algebraic Processes, Her Majesty's Stationery Office, London, 1963. MR 0161456 (28:4661)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65R20
Retrieve articles in all journals
with MSC:
65R20
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819880942147X
PII:
S 00255718(1988)0942147X
Keywords:
Cauchy singular integral equation
Article copyright:
© Copyright 1988 American Mathematical Society
