Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the convergence of collocation methods for Symm's integral equation on open curves


Authors: M. Costabel, V. J. Ervin and E. P. Stephan
Journal: Math. Comp. 51 (1988), 167-179
MSC: Primary 65R20; Secondary 45E99, 45L10
DOI: https://doi.org/10.1090/S0025-5718-1988-0942148-1
MathSciNet review: 942148
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, Costabel and Stephan in [8] presented convergence proofs for collocation with piecewise linear trial functions for Symm's integral equation on plane closed curves with corners. In this article we prove the convergence of the above collocation method in the case of open curves. We derive asymptotic error estimates in Sobolev norms and analyze the effect of graded meshes. Numerical experiments based on the implementation of [6] show experimental orders of convergence which confirm our theoretical results on the asymptotic rates of convergence.


References [Enhancements On Off] (What's this?)

  • [1] P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR 0443383 (56:1753)
  • [2] D. N. Arnold & W. L. Wendland, "On the asymptotic convergence of collocation methods," Math. Comp., v. 41, 1984, pp. 349-381. MR 717691 (85h:65254)
  • [3] D. N. Arnold & W. L. Wendland, "The convergence of spline collocation for strongly elliptic equations on curves," Numer. Math., v. 47, 1985, pp. 317-341. MR 808553 (87f:65142)
  • [4] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, Pa., 1976. MR 0483585 (58:3577)
  • [5] C. T. H. Baker, The Numerical Treatment of Integral Equations, Oxford University Press, Oxford, 1977. MR 0467215 (57:7079)
  • [6] M. Costabel, V. J. Ervin & E. P. Stephan, "Experimental asymptotic convergence of collocation method for boundary integral equations on polygons," submitted to J. Comput. Mech.
  • [7] M. Costabel & E. P. Stephan, "Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation," in Mathematical Models and Methods in Mechanics 1981, Banach Center Publications Vol. 15 (W. Fiszdon, K. Wilmański, eds.), PWN-Polish Scientific Publishers, Warsaw, 1985, pp. 175-251. Short report in Advances in Computer Methods for Partial Differential Equations IV, IMACS, 1981, pp. 300-340. MR 874845 (88f:35037)
  • [8] M. Costabel & E. P. Stephan, "On the convergence of collocation methods for boundary integral equations on polygons," Math. Comp., v. 49, 1987, pp. 461-478. MR 906182 (88j:65292)
  • [9] M. Costabel & E. P. Stephan, "Collocation methods for integral equations on polygons," in Innovative Numerical Methods in Engineering (R. P. Shaw et al., eds.), Proc. 4th Internat. Sympos., Georgia Tech, Atlanta, GA, 1986, Springer-Verlag, Berlin and New York, 1986, pp. 43-50. MR 902858 (88h:65242)
  • [10] J. Elschner, On Spline Collocation for Singular Integral Equations on an Interval, Seminar Analysis 1985/86, pp. 31-54, Karl-Weierstrass-Institut für Mathematik, Berlin, 1986. MR 890525 (89f:65140)
  • [11] I. C. Gohberg & I. A. Feldman, Convolution Equations and Projection Methods for Their Solution, Transl. Math. Monos., vol. 41, Amer. Math. Soc., Providence, R. I., 1974. MR 0355675 (50:8149)
  • [12] R. Hagen & B. Silbermann, "A finite element collocation method for bisingular integral equations," Applicable Anal., v. 19, 1985, pp. 117-135. MR 800163 (87a:45014)
  • [13] M. A. Krasnosel'skii et al., Approximate Solution of Operator Equations, Noordhoff, Groningen, 1972. MR 0385655 (52:6515)
  • [14] J. L. Lions & E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer, Berlin, 1972.
  • [15] S. Prößdorf, "Ein Lokalisierungsprinzip in der Theorie der Spline-Approximation und einige Anwendungen," Math. Nachr., v. 119, 1984, pp. 239-255. MR 774194 (86d:41013)
  • [16] S. Prößdorf & B. Silbermann, Gestörte Projektionsverfahren und einige ihrer Anwendungen, Abhandlungen der Akademie d. Wiss. der DDR, Abt. Mathematik, Nr. 6N, Akademie-Verlag, Berlin, 1978, pp. 229-237. MR 540463 (80e:65041)
  • [17] S. Prößdorf & A. Rathsfeld, "A spline collocation method for singular integral equations with piecewise continuous coefficients," Integral Equations Operator Theory, v. 7, 1984, pp. 536-560. MR 757987 (85h:65276)
  • [18] J. Saranen & W. L. Wendland, "On the asymptotic convergence of collocation methods with spline functions of even degree," Math. Comp., v. 45, 1985, pp. 91-108. MR 790646 (86m:65159)
  • [19] G. Schmidt, "On spline collocation for singular integral equations," Math. Nachr., v. 111, 1983, pp. 177-196. MR 725777 (85f:65128)
  • [20] W. L. Wendland, "Boundary element methods and their asymptotic convergence," in Theoretical Acoustics and Numerical Techniques (P. Filippi, ed.), CISM Lectures 277, Springer, Wien-New York, 1983, pp. 135-216. MR 762829 (86f:65201)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65R20, 45E99, 45L10

Retrieve articles in all journals with MSC: 65R20, 45E99, 45L10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0942148-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society