Interpolation by multivariate splines

Authors:
Charles K. Chui, Harvey Diamond and Louise A. Raphael

Journal:
Math. Comp. **51** (1988), 203-218

MSC:
Primary 41A05; Secondary 41A15, 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942150-X

MathSciNet review:
942150

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general interpolation scheme by multivariate splines at regular sample points is introduced. This scheme guarantees the local optimal order of approximation to sufficiently smooth data functions. A discussion on numerical implementation is included.

**[1]**C. de Boor,*The Polynomials in the Linear Span of Integer Translates of a Compactly Supported Function*, MRC Report #2930, April 1986.**[2]**C. de Boor, K. Höllig & S. Riemenschneider, "Bivariate cardinal interpolation by splines on a three-directional mesh,"*Illinois J. Math.*, v. 29, 1985, pp. 533-566. MR**806466 (87b:65008)****[3]**C. K. Chui & H. Diamond, "A natural formulation of quasi-interpolation by multivariate splines,"*Proc. Amer. Math. Soc.*, v. 99, 1987, pp. 643-646. MR**877032 (88g:41010)****[4]**C. K. Chui, K. Jetter & J. Ward, "Cardinal interpolation by multivariate splines,"*Math. Comp.*, v. 48, 1987, pp. 711-724. MR**878701 (88f:41003)****[5]**I. J. Schoenberg,*Cardinal Spline Interpolation*, SIAM Regional Conference Series in Appl. Math., 1973. MR**0420078 (54:8095)****[6]**G. Strang & G. Fix, "A Fourier analysis of the finite element variational method," C.I.M.E. II Ciclo 1971,*Constructive Aspects of Functional Analysis*(G. Geymonat, ed.), 1973, pp. 793-840.**[7]**Sha Zhen, "On interpolation by ,"*Approx. Theory Appl.*, v. 1, no. 2, 1985, pp. 71-82. MR**816602 (87d:41016)****[8]**Sha Zhen, "On interpolation by ,"*Approx. Theory Appl*, v. 1, no. 4, 1985, pp. 1-18. MR**885350 (88d:65025)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A05,
41A15,
65D07

Retrieve articles in all journals with MSC: 41A05, 41A15, 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942150-X

Keywords:
Multivariate splines,
interpolation,
optimal order,
box splines,
fundamental function,
numerical implementation

Article copyright:
© Copyright 1988
American Mathematical Society