Bivariate interpolation with quadratic box splines

Authors:
Morten Dæhlen and Tom Lyche

Journal:
Math. Comp. **51** (1988), 219-230

MSC:
Primary 41A05; Secondary 41A15, 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942151-1

MathSciNet review:
942151

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence and uniqueness results are given for interpolation with translates of a bivariate, three-directional, -quadratic box spline over a finite polygonal region. A Hermite interpolation problem for a slightly more general box spline is also considered.

**[1]**C. de Boor & K. Höllig, "Bivariate box splines and smooth pp functions on a three direction mesh,"*J. Comput. Appl. Math.*, v.9, 1983, pp. 13-28. MR**702228 (85f:41004)****[2]**C. de Boor, "Multivariate approximation," in*The State of the Art in Numerical Analysis*(A. Iserles and M. J. D. Powell, eds.), Clarendon Press, Oxford, 1987, pp. 87-109. MR**921663 (88j:41069)****[3]**E. W. Cheney,*Multivariate Approximation Theory*:*Selected topics*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 51, SIAM, Philadelphia, Pa., 1986. MR**862115 (88k:41003)****[4]**C. K. Chui, T. X. He & R. H. Wang, "Interpolation of bivariate linear splines," in*Alfred Haar Memorial Conference*(J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1986.**[5]**C. K. Chui & T. X. He, "On location of sample points for interpolation by bivariate quadratic splines," in*Numerical Methods of Approximation Theory*, vol. 8 (L. Collatz, G. Meinardus and G. Nürnberger, eds.), Birkhäuser, Basel, 1987, pp. 30-43. MR**1025765****[6]**M. Dæhlen, "An example of bivariate interpolation with translates of -quadratic boxsplines on a three direction mesh,"*Comput. Aided Geom. Des.*, v. 4, 1987, pp. 251-255. MR**917785****[7]**K. Höllig, "Box splines," in*Approximation Theory V*(C. K. Chui, L. L. Schumaker and J. Ward, eds.), Academic Press, New York, 1986, pp. 71-95. MR**903683 (88f:41020)****[8]**C. A. Micchelli, "Algebraic aspects of interpolation," in*Approximation Theory*, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1986, pp. 81-102. MR**864367 (88c:41006)****[9]**T. I. Mueller,*Geometric Modelling with Multivariate*B-*splines*, Dissertation, Dept. of Comp. Sci., Univ. of Utah, 1986.**[10]**K. Jetter, "A short survey on cardinal interpolation by box splines," in*Topics in Multivariate Approximation*(C. K. Chui, L. L. Schumaker and F. Utreras, eds.), Academic Press, New York, 1987, pp. 125-139. MR**924827 (89d:41025)****[11]**L. L. Schumaker,*Spline Functions*:*Basic Theory*, Wiley, New York, 1981. MR**606200 (82j:41001)****[12]**R. S. Varga,*Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR**0158502 (28:1725)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A05,
41A15,
65D07

Retrieve articles in all journals with MSC: 41A05, 41A15, 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942151-1

Keywords:
Interpolation,
box splines,
bivariate,
three-direction grid

Article copyright:
© Copyright 1988
American Mathematical Society