Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Bivariate interpolation with quadratic box splines


Authors: Morten Dæhlen and Tom Lyche
Journal: Math. Comp. 51 (1988), 219-230
MSC: Primary 41A05; Secondary 41A15, 65D07
DOI: https://doi.org/10.1090/S0025-5718-1988-0942151-1
MathSciNet review: 942151
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence and uniqueness results are given for interpolation with translates of a bivariate, three-directional, $ {C^0}$-quadratic box spline over a finite polygonal region. A Hermite interpolation problem for a slightly more general box spline is also considered.


References [Enhancements On Off] (What's this?)

  • [1] C. de Boor & K. Höllig, "Bivariate box splines and smooth pp functions on a three direction mesh," J. Comput. Appl. Math., v.9, 1983, pp. 13-28. MR 702228 (85f:41004)
  • [2] C. de Boor, "Multivariate approximation," in The State of the Art in Numerical Analysis (A. Iserles and M. J. D. Powell, eds.), Clarendon Press, Oxford, 1987, pp. 87-109. MR 921663 (88j:41069)
  • [3] E. W. Cheney, Multivariate Approximation Theory: Selected topics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 51, SIAM, Philadelphia, Pa., 1986. MR 862115 (88k:41003)
  • [4] C. K. Chui, T. X. He & R. H. Wang, "Interpolation of bivariate linear splines," in Alfred Haar Memorial Conference (J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1986.
  • [5] C. K. Chui & T. X. He, "On location of sample points for interpolation by bivariate $ {C^1}$ quadratic splines," in Numerical Methods of Approximation Theory, vol. 8 (L. Collatz, G. Meinardus and G. Nürnberger, eds.), Birkhäuser, Basel, 1987, pp. 30-43. MR 1025765
  • [6] M. Dæhlen, "An example of bivariate interpolation with translates of $ {C^0}$-quadratic boxsplines on a three direction mesh," Comput. Aided Geom. Des., v. 4, 1987, pp. 251-255. MR 917785
  • [7] K. Höllig, "Box splines," in Approximation Theory V (C. K. Chui, L. L. Schumaker and J. Ward, eds.), Academic Press, New York, 1986, pp. 71-95. MR 903683 (88f:41020)
  • [8] C. A. Micchelli, "Algebraic aspects of interpolation," in Approximation Theory, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1986, pp. 81-102. MR 864367 (88c:41006)
  • [9] T. I. Mueller, Geometric Modelling with Multivariate B-splines, Dissertation, Dept. of Comp. Sci., Univ. of Utah, 1986.
  • [10] K. Jetter, "A short survey on cardinal interpolation by box splines," in Topics in Multivariate Approximation (C. K. Chui, L. L. Schumaker and F. Utreras, eds.), Academic Press, New York, 1987, pp. 125-139. MR 924827 (89d:41025)
  • [11] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981. MR 606200 (82j:41001)
  • [12] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 0158502 (28:1725)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A05, 41A15, 65D07

Retrieve articles in all journals with MSC: 41A05, 41A15, 65D07


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1988-0942151-1
Keywords: Interpolation, box splines, bivariate, three-direction grid
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society