Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Bivariate interpolation with quadratic box splines


Authors: Morten Dæhlen and Tom Lyche
Journal: Math. Comp. 51 (1988), 219-230
MSC: Primary 41A05; Secondary 41A15, 65D07
MathSciNet review: 942151
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Existence and uniqueness results are given for interpolation with translates of a bivariate, three-directional, $ {C^0}$-quadratic box spline over a finite polygonal region. A Hermite interpolation problem for a slightly more general box spline is also considered.


References [Enhancements On Off] (What's this?)

  • [1] C. de Boor and K. Höllig, Bivariate box splines and smooth pp functions on a three direction mesh, J. Comput. Appl. Math. 9 (1983), no. 1, 13–28. MR 702228, 10.1016/0377-0427(83)90025-0
  • [2] Carl de Boor, Multivariate approximation, The state of the art in numerical analysis (Birmingham, 1986) Inst. Math. Appl. Conf. Ser. New Ser., vol. 9, Oxford Univ. Press, New York, 1987, pp. 87–109. MR 921663
  • [3] E. Ward Cheney, Multivariate approximation theory, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 51, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1986. Selected topics. MR 862115
  • [4] C. K. Chui, T. X. He & R. H. Wang, "Interpolation of bivariate linear splines," in Alfred Haar Memorial Conference (J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1986.
  • [5] C. K. Chui and T. X. He, On location of sample points for interpolation by bivariate 𝐶¹ quadratic splines, Numerical methods of approximation theory, Vol. 8 (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., vol. 81, Birkhäuser, Basel, 1987, pp. 30–43. MR 1025765
  • [6] Morten Dæhlen, An example of bivariate interpolation with translates of 𝐶⁰-quadratic box-splines on a three direction mesh, Comput. Aided Geom. Design 4 (1987), no. 3, 251–255. MR 917785, 10.1016/0167-8396(87)90017-3
  • [7] Klaus Höllig, Box splines, Approximation theory, V (College Station, Tex., 1986) Academic Press, Boston, MA, 1986, pp. 71–95. MR 903683
  • [8] Charles A. Micchelli, Algebraic aspects of interpolation, Approximation theory (New Orleans, La., 1986) Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 81–102. MR 864367, 10.1090/psapm/036/864367
  • [9] T. I. Mueller, Geometric Modelling with Multivariate B-splines, Dissertation, Dept. of Comp. Sci., Univ. of Utah, 1986.
  • [10] Kurt Jetter, A short survey on cardinal interpolation by box splines, Topics in multivariate approximation (Santiago, 1986) Academic Press, Boston, MA, 1987, pp. 125–139. MR 924827
  • [11] Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 606200
  • [12] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A05, 41A15, 65D07

Retrieve articles in all journals with MSC: 41A05, 41A15, 65D07


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1988-0942151-1
Keywords: Interpolation, box splines, bivariate, three-direction grid
Article copyright: © Copyright 1988 American Mathematical Society