Bivariate interpolation with quadratic box splines

Authors:
Morten Dæhlen and Tom Lyche

Journal:
Math. Comp. **51** (1988), 219-230

MSC:
Primary 41A05; Secondary 41A15, 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942151-1

MathSciNet review:
942151

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence and uniqueness results are given for interpolation with translates of a bivariate, three-directional, -quadratic box spline over a finite polygonal region. A Hermite interpolation problem for a slightly more general box spline is also considered.

**[1]**C. de Boor and K. Höllig,*Bivariate box splines and smooth pp functions on a three direction mesh*, J. Comput. Appl. Math.**9**(1983), no. 1, 13–28. MR**702228**, https://doi.org/10.1016/0377-0427(83)90025-0**[2]**Carl de Boor,*Multivariate approximation*, The state of the art in numerical analysis (Birmingham, 1986) Inst. Math. Appl. Conf. Ser. New Ser., vol. 9, Oxford Univ. Press, New York, 1987, pp. 87–109. MR**921663****[3]**E. Ward Cheney,*Multivariate approximation theory*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 51, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1986. Selected topics. MR**862115****[4]**C. K. Chui, T. X. He & R. H. Wang, "Interpolation of bivariate linear splines," in*Alfred Haar Memorial Conference*(J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1986.**[5]**C. K. Chui and T. X. He,*On location of sample points for interpolation by bivariate 𝐶¹ quadratic splines*, Numerical methods of approximation theory, Vol. 8 (Oberwolfach, 1986) Internat. Schriftenreihe Numer. Math., vol. 81, Birkhäuser, Basel, 1987, pp. 30–43. MR**1025765****[6]**Morten Dæhlen,*An example of bivariate interpolation with translates of 𝐶⁰-quadratic box-splines on a three direction mesh*, Comput. Aided Geom. Design**4**(1987), no. 3, 251–255. MR**917785**, https://doi.org/10.1016/0167-8396(87)90017-3**[7]**Klaus Höllig,*Box splines*, Approximation theory, V (College Station, Tex., 1986) Academic Press, Boston, MA, 1986, pp. 71–95. MR**903683****[8]**Charles A. Micchelli,*Algebraic aspects of interpolation*, Approximation theory (New Orleans, La., 1986) Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 81–102. MR**864367**, https://doi.org/10.1090/psapm/036/864367**[9]**T. I. Mueller,*Geometric Modelling with Multivariate*B-*splines*, Dissertation, Dept. of Comp. Sci., Univ. of Utah, 1986.**[10]**Kurt Jetter,*A short survey on cardinal interpolation by box splines*, Topics in multivariate approximation (Santiago, 1986) Academic Press, Boston, MA, 1987, pp. 125–139. MR**924827****[11]**Larry L. Schumaker,*Spline functions: basic theory*, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR**606200****[12]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A05,
41A15,
65D07

Retrieve articles in all journals with MSC: 41A05, 41A15, 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942151-1

Keywords:
Interpolation,
box splines,
bivariate,
three-direction grid

Article copyright:
© Copyright 1988
American Mathematical Society